ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl9r GIF version

Theorem syl9r 73
Description: A nested syllogism inference with different antecedents. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
syl9r.1 (𝜑 → (𝜓𝜒))
syl9r.2 (𝜃 → (𝜒𝜏))
Assertion
Ref Expression
syl9r (𝜃 → (𝜑 → (𝜓𝜏)))

Proof of Theorem syl9r
StepHypRef Expression
1 syl9r.1 . . 3 (𝜑 → (𝜓𝜒))
2 syl9r.2 . . 3 (𝜃 → (𝜒𝜏))
31, 2syl9 72 . 2 (𝜑 → (𝜃 → (𝜓𝜏)))
43com12 30 1 (𝜃 → (𝜑 → (𝜓𝜏)))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  sylan9r  408  const  842  pm2.85dc  895  looinvdc  905  pclem6  1364  nfimd  1573  19.23t  1665  fununi  5256  dfimafn  5535  funimass3  5601  nnsub  8896  bj-con1st  13632
  Copyright terms: Public domain W3C validator