Detailed syntax breakdown of Definition df-acnm
| Step | Hyp | Ref
| Expression |
| 1 | | cA |
. . 3
class 𝐴 |
| 2 | 1 | wacn 7256 |
. 2
class AC
𝐴 |
| 3 | | cvv 2763 |
. . . . 5
class
V |
| 4 | 1, 3 | wcel 2167 |
. . . 4
wff 𝐴 ∈ V |
| 5 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
| 6 | 5 | cv 1363 |
. . . . . . . . 9
class 𝑦 |
| 7 | | vg |
. . . . . . . . . 10
setvar 𝑔 |
| 8 | 7 | cv 1363 |
. . . . . . . . 9
class 𝑔 |
| 9 | 6, 8 | cfv 5259 |
. . . . . . . 8
class (𝑔‘𝑦) |
| 10 | | vf |
. . . . . . . . . 10
setvar 𝑓 |
| 11 | 10 | cv 1363 |
. . . . . . . . 9
class 𝑓 |
| 12 | 6, 11 | cfv 5259 |
. . . . . . . 8
class (𝑓‘𝑦) |
| 13 | 9, 12 | wcel 2167 |
. . . . . . 7
wff (𝑔‘𝑦) ∈ (𝑓‘𝑦) |
| 14 | 13, 5, 1 | wral 2475 |
. . . . . 6
wff
∀𝑦 ∈
𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦) |
| 15 | 14, 7 | wex 1506 |
. . . . 5
wff
∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦) |
| 16 | | vj |
. . . . . . . . 9
setvar 𝑗 |
| 17 | | vz |
. . . . . . . . 9
setvar 𝑧 |
| 18 | 16, 17 | wel 2168 |
. . . . . . . 8
wff 𝑗 ∈ 𝑧 |
| 19 | 18, 16 | wex 1506 |
. . . . . . 7
wff
∃𝑗 𝑗 ∈ 𝑧 |
| 20 | | vx |
. . . . . . . . 9
setvar 𝑥 |
| 21 | 20 | cv 1363 |
. . . . . . . 8
class 𝑥 |
| 22 | 21 | cpw 3606 |
. . . . . . 7
class 𝒫
𝑥 |
| 23 | 19, 17, 22 | crab 2479 |
. . . . . 6
class {𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} |
| 24 | | cmap 6716 |
. . . . . 6
class
↑𝑚 |
| 25 | 23, 1, 24 | co 5925 |
. . . . 5
class ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐴) |
| 26 | 15, 10, 25 | wral 2475 |
. . . 4
wff
∀𝑓 ∈
({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦) |
| 27 | 4, 26 | wa 104 |
. . 3
wff (𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦)) |
| 28 | 27, 20 | cab 2182 |
. 2
class {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} |
| 29 | 2, 28 | wceq 1364 |
1
wff AC
𝐴 = {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} |