ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-acnm GIF version

Definition df-acnm 7258
Description: Define a local and length-limited version of the axiom of choice. The definition of the predicate 𝑋AC 𝐴 is that for all families of inhabited subsets of 𝑋 indexed on 𝐴 (i.e. functions 𝐴⟶{𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗𝑗𝑧}), there is a function which selects an element from each set in the family. (Contributed by Mario Carneiro, 31-Aug-2015.) Change nonempty to inhabited. (Revised by Jim Kingdon, 22-Nov-2025.)
Assertion
Ref Expression
df-acnm AC 𝐴 = {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))}
Distinct variable group:   𝑥,𝐴,𝑓,𝑧,𝑗,𝑔,𝑦

Detailed syntax breakdown of Definition df-acnm
StepHypRef Expression
1 cA . . 3 class 𝐴
21wacn 7256 . 2 class AC 𝐴
3 cvv 2763 . . . . 5 class V
41, 3wcel 2167 . . . 4 wff 𝐴 ∈ V
5 vy . . . . . . . . . 10 setvar 𝑦
65cv 1363 . . . . . . . . 9 class 𝑦
7 vg . . . . . . . . . 10 setvar 𝑔
87cv 1363 . . . . . . . . 9 class 𝑔
96, 8cfv 5259 . . . . . . . 8 class (𝑔𝑦)
10 vf . . . . . . . . . 10 setvar 𝑓
1110cv 1363 . . . . . . . . 9 class 𝑓
126, 11cfv 5259 . . . . . . . 8 class (𝑓𝑦)
139, 12wcel 2167 . . . . . . 7 wff (𝑔𝑦) ∈ (𝑓𝑦)
1413, 5, 1wral 2475 . . . . . 6 wff 𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)
1514, 7wex 1506 . . . . 5 wff 𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)
16 vj . . . . . . . . 9 setvar 𝑗
17 vz . . . . . . . . 9 setvar 𝑧
1816, 17wel 2168 . . . . . . . 8 wff 𝑗𝑧
1918, 16wex 1506 . . . . . . 7 wff 𝑗 𝑗𝑧
20 vx . . . . . . . . 9 setvar 𝑥
2120cv 1363 . . . . . . . 8 class 𝑥
2221cpw 3606 . . . . . . 7 class 𝒫 𝑥
2319, 17, 22crab 2479 . . . . . 6 class {𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧}
24 cmap 6716 . . . . . 6 class 𝑚
2523, 1, 24co 5925 . . . . 5 class ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴)
2615, 10, 25wral 2475 . . . 4 wff 𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦)
274, 26wa 104 . . 3 wff (𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))
2827, 20cab 2182 . 2 class {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))}
292, 28wceq 1364 1 wff AC 𝐴 = {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))}
Colors of variables: wff set class
This definition is referenced by:  acnrcl  7284  acneq  7285  isacnm  7286
  Copyright terms: Public domain W3C validator