| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > acneq | GIF version | ||
| Description: Equality theorem for the choice set function. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| acneq | ⊢ (𝐴 = 𝐶 → AC 𝐴 = AC 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2292 | . . . 4 ⊢ (𝐴 = 𝐶 → (𝐴 ∈ V ↔ 𝐶 ∈ V)) | |
| 2 | oveq2 6015 | . . . . 5 ⊢ (𝐴 = 𝐶 → ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐴) = ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐶)) | |
| 3 | raleq 2728 | . . . . . 6 ⊢ (𝐴 = 𝐶 → (∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦) ↔ ∀𝑦 ∈ 𝐶 (𝑔‘𝑦) ∈ (𝑓‘𝑦))) | |
| 4 | 3 | exbidv 1871 | . . . . 5 ⊢ (𝐴 = 𝐶 → (∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦) ↔ ∃𝑔∀𝑦 ∈ 𝐶 (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
| 5 | 2, 4 | raleqbidv 2744 | . . . 4 ⊢ (𝐴 = 𝐶 → (∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦) ↔ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐶)∃𝑔∀𝑦 ∈ 𝐶 (𝑔‘𝑦) ∈ (𝑓‘𝑦))) |
| 6 | 1, 5 | anbi12d 473 | . . 3 ⊢ (𝐴 = 𝐶 → ((𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦)) ↔ (𝐶 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐶)∃𝑔∀𝑦 ∈ 𝐶 (𝑔‘𝑦) ∈ (𝑓‘𝑦)))) |
| 7 | 6 | abbidv 2347 | . 2 ⊢ (𝐴 = 𝐶 → {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} = {𝑥 ∣ (𝐶 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐶)∃𝑔∀𝑦 ∈ 𝐶 (𝑔‘𝑦) ∈ (𝑓‘𝑦))}) |
| 8 | df-acnm 7360 | . 2 ⊢ AC 𝐴 = {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} | |
| 9 | df-acnm 7360 | . 2 ⊢ AC 𝐶 = {𝑥 ∣ (𝐶 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑥 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐶)∃𝑔∀𝑦 ∈ 𝐶 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} | |
| 10 | 7, 8, 9 | 3eqtr4g 2287 | 1 ⊢ (𝐴 = 𝐶 → AC 𝐴 = AC 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∃wex 1538 ∈ wcel 2200 {cab 2215 ∀wral 2508 {crab 2512 Vcvv 2799 𝒫 cpw 3649 ‘cfv 5318 (class class class)co 6007 ↑𝑚 cmap 6803 AC wacn 7358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6010 df-acnm 7360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |