| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cardcl | GIF version | ||
| Description: The cardinality of a well-orderable set is an ordinal. (Contributed by Jim Kingdon, 30-Aug-2021.) |
| Ref | Expression |
|---|---|
| cardcl | ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐴 → (card‘𝐴) ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-card 7312 | . . . 4 ⊢ card = (𝑥 ∈ V ↦ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥}) | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐴 → card = (𝑥 ∈ V ↦ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥})) |
| 3 | breq2 4063 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑦 ≈ 𝑥 ↔ 𝑦 ≈ 𝐴)) | |
| 4 | 3 | rabbidv 2765 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} = {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
| 5 | 4 | inteqd 3904 | . . . 4 ⊢ (𝑥 = 𝐴 → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
| 6 | 5 | adantl 277 | . . 3 ⊢ ((∃𝑦 ∈ On 𝑦 ≈ 𝐴 ∧ 𝑥 = 𝐴) → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
| 7 | encv 6856 | . . . . 5 ⊢ (𝑦 ≈ 𝐴 → (𝑦 ∈ V ∧ 𝐴 ∈ V)) | |
| 8 | 7 | simprd 114 | . . . 4 ⊢ (𝑦 ≈ 𝐴 → 𝐴 ∈ V) |
| 9 | 8 | rexlimivw 2621 | . . 3 ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐴 → 𝐴 ∈ V) |
| 10 | intexrabim 4213 | . . 3 ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ V) | |
| 11 | 2, 6, 9, 10 | fvmptd 5683 | . 2 ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐴 → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
| 12 | onintrab2im 4584 | . 2 ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ On) | |
| 13 | 11, 12 | eqeltrd 2284 | 1 ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐴 → (card‘𝐴) ∈ On) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 ∃wrex 2487 {crab 2490 Vcvv 2776 ∩ cint 3899 class class class wbr 4059 ↦ cmpt 4121 Oncon0 4428 ‘cfv 5290 ≈ cen 6848 cardccrd 7310 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-en 6851 df-card 7312 |
| This theorem is referenced by: ficardon 7322 |
| Copyright terms: Public domain | W3C validator |