ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cardcl GIF version

Theorem cardcl 6712
Description: The cardinality of a well-orderable set is an ordinal. (Contributed by Jim Kingdon, 30-Aug-2021.)
Assertion
Ref Expression
cardcl (∃𝑦 ∈ On 𝑦𝐴 → (card‘𝐴) ∈ On)
Distinct variable group:   𝑦,𝐴

Proof of Theorem cardcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-card 6711 . . . 4 card = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
21a1i 9 . . 3 (∃𝑦 ∈ On 𝑦𝐴 → card = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥}))
3 breq2 3815 . . . . . 6 (𝑥 = 𝐴 → (𝑦𝑥𝑦𝐴))
43rabbidv 2601 . . . . 5 (𝑥 = 𝐴 → {𝑦 ∈ On ∣ 𝑦𝑥} = {𝑦 ∈ On ∣ 𝑦𝐴})
54inteqd 3667 . . . 4 (𝑥 = 𝐴 {𝑦 ∈ On ∣ 𝑦𝑥} = {𝑦 ∈ On ∣ 𝑦𝐴})
65adantl 271 . . 3 ((∃𝑦 ∈ On 𝑦𝐴𝑥 = 𝐴) → {𝑦 ∈ On ∣ 𝑦𝑥} = {𝑦 ∈ On ∣ 𝑦𝐴})
7 encv 6393 . . . . 5 (𝑦𝐴 → (𝑦 ∈ V ∧ 𝐴 ∈ V))
87simprd 112 . . . 4 (𝑦𝐴𝐴 ∈ V)
98rexlimivw 2479 . . 3 (∃𝑦 ∈ On 𝑦𝐴𝐴 ∈ V)
10 intexrabim 3954 . . 3 (∃𝑦 ∈ On 𝑦𝐴 {𝑦 ∈ On ∣ 𝑦𝐴} ∈ V)
112, 6, 9, 10fvmptd 5330 . 2 (∃𝑦 ∈ On 𝑦𝐴 → (card‘𝐴) = {𝑦 ∈ On ∣ 𝑦𝐴})
12 onintrab2im 4298 . 2 (∃𝑦 ∈ On 𝑦𝐴 {𝑦 ∈ On ∣ 𝑦𝐴} ∈ On)
1311, 12eqeltrd 2159 1 (∃𝑦 ∈ On 𝑦𝐴 → (card‘𝐴) ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1285  wcel 1434  wrex 2354  {crab 2357  Vcvv 2612   cint 3662   class class class wbr 3811  cmpt 3865  Oncon0 4154  cfv 4969  cen 6385  cardccrd 6710
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 4000  ax-un 4224
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4084  df-iord 4157  df-on 4159  df-suc 4162  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-iota 4934  df-fun 4971  df-fv 4977  df-en 6388  df-card 6711
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator