![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cardcl | GIF version |
Description: The cardinality of a well-orderable set is an ordinal. (Contributed by Jim Kingdon, 30-Aug-2021.) |
Ref | Expression |
---|---|
cardcl | ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐴 → (card‘𝐴) ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-card 7242 | . . . 4 ⊢ card = (𝑥 ∈ V ↦ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥}) | |
2 | 1 | a1i 9 | . . 3 ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐴 → card = (𝑥 ∈ V ↦ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥})) |
3 | breq2 4034 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑦 ≈ 𝑥 ↔ 𝑦 ≈ 𝐴)) | |
4 | 3 | rabbidv 2749 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} = {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
5 | 4 | inteqd 3876 | . . . 4 ⊢ (𝑥 = 𝐴 → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
6 | 5 | adantl 277 | . . 3 ⊢ ((∃𝑦 ∈ On 𝑦 ≈ 𝐴 ∧ 𝑥 = 𝐴) → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
7 | encv 6802 | . . . . 5 ⊢ (𝑦 ≈ 𝐴 → (𝑦 ∈ V ∧ 𝐴 ∈ V)) | |
8 | 7 | simprd 114 | . . . 4 ⊢ (𝑦 ≈ 𝐴 → 𝐴 ∈ V) |
9 | 8 | rexlimivw 2607 | . . 3 ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐴 → 𝐴 ∈ V) |
10 | intexrabim 4183 | . . 3 ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ V) | |
11 | 2, 6, 9, 10 | fvmptd 5639 | . 2 ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐴 → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
12 | onintrab2im 4551 | . 2 ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} ∈ On) | |
13 | 11, 12 | eqeltrd 2270 | 1 ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐴 → (card‘𝐴) ∈ On) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ∃wrex 2473 {crab 2476 Vcvv 2760 ∩ cint 3871 class class class wbr 4030 ↦ cmpt 4091 Oncon0 4395 ‘cfv 5255 ≈ cen 6794 cardccrd 7241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-suc 4403 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-en 6797 df-card 7242 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |