ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cardcl GIF version

Theorem cardcl 7314
Description: The cardinality of a well-orderable set is an ordinal. (Contributed by Jim Kingdon, 30-Aug-2021.)
Assertion
Ref Expression
cardcl (∃𝑦 ∈ On 𝑦𝐴 → (card‘𝐴) ∈ On)
Distinct variable group:   𝑦,𝐴

Proof of Theorem cardcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-card 7312 . . . 4 card = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
21a1i 9 . . 3 (∃𝑦 ∈ On 𝑦𝐴 → card = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥}))
3 breq2 4063 . . . . . 6 (𝑥 = 𝐴 → (𝑦𝑥𝑦𝐴))
43rabbidv 2765 . . . . 5 (𝑥 = 𝐴 → {𝑦 ∈ On ∣ 𝑦𝑥} = {𝑦 ∈ On ∣ 𝑦𝐴})
54inteqd 3904 . . . 4 (𝑥 = 𝐴 {𝑦 ∈ On ∣ 𝑦𝑥} = {𝑦 ∈ On ∣ 𝑦𝐴})
65adantl 277 . . 3 ((∃𝑦 ∈ On 𝑦𝐴𝑥 = 𝐴) → {𝑦 ∈ On ∣ 𝑦𝑥} = {𝑦 ∈ On ∣ 𝑦𝐴})
7 encv 6856 . . . . 5 (𝑦𝐴 → (𝑦 ∈ V ∧ 𝐴 ∈ V))
87simprd 114 . . . 4 (𝑦𝐴𝐴 ∈ V)
98rexlimivw 2621 . . 3 (∃𝑦 ∈ On 𝑦𝐴𝐴 ∈ V)
10 intexrabim 4213 . . 3 (∃𝑦 ∈ On 𝑦𝐴 {𝑦 ∈ On ∣ 𝑦𝐴} ∈ V)
112, 6, 9, 10fvmptd 5683 . 2 (∃𝑦 ∈ On 𝑦𝐴 → (card‘𝐴) = {𝑦 ∈ On ∣ 𝑦𝐴})
12 onintrab2im 4584 . 2 (∃𝑦 ∈ On 𝑦𝐴 {𝑦 ∈ On ∣ 𝑦𝐴} ∈ On)
1311, 12eqeltrd 2284 1 (∃𝑦 ∈ On 𝑦𝐴 → (card‘𝐴) ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2178  wrex 2487  {crab 2490  Vcvv 2776   cint 3899   class class class wbr 4059  cmpt 4121  Oncon0 4428  cfv 5290  cen 6848  cardccrd 7310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-en 6851  df-card 7312
This theorem is referenced by:  ficardon  7322
  Copyright terms: Public domain W3C validator