ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-acnm Unicode version

Definition df-acnm 7258
Description: Define a local and length-limited version of the axiom of choice. The definition of the predicate 
X  e. AC  A is that for all families of inhabited subsets of  X indexed on  A (i.e. functions  A --> { z  e.  ~P X  |  E. j j  e.  z }), there is a function which selects an element from each set in the family. (Contributed by Mario Carneiro, 31-Aug-2015.) Change nonempty to inhabited. (Revised by Jim Kingdon, 22-Nov-2025.)
Assertion
Ref Expression
df-acnm  |- AC  A  =  { x  |  ( A  e.  _V  /\  A. f  e.  ( { z  e.  ~P x  |  E. j  j  e.  z }  ^m  A
) E. g A. y  e.  A  (
g `  y )  e.  ( f `  y
) ) }
Distinct variable group:    x, A, f, z, j, g, y

Detailed syntax breakdown of Definition df-acnm
StepHypRef Expression
1 cA . . 3  class  A
21wacn 7256 . 2  class AC  A
3 cvv 2763 . . . . 5  class  _V
41, 3wcel 2167 . . . 4  wff  A  e. 
_V
5 vy . . . . . . . . . 10  setvar  y
65cv 1363 . . . . . . . . 9  class  y
7 vg . . . . . . . . . 10  setvar  g
87cv 1363 . . . . . . . . 9  class  g
96, 8cfv 5259 . . . . . . . 8  class  ( g `
 y )
10 vf . . . . . . . . . 10  setvar  f
1110cv 1363 . . . . . . . . 9  class  f
126, 11cfv 5259 . . . . . . . 8  class  ( f `
 y )
139, 12wcel 2167 . . . . . . 7  wff  ( g `
 y )  e.  ( f `  y
)
1413, 5, 1wral 2475 . . . . . 6  wff  A. y  e.  A  ( g `  y )  e.  ( f `  y )
1514, 7wex 1506 . . . . 5  wff  E. g A. y  e.  A  ( g `  y
)  e.  ( f `
 y )
16 vj . . . . . . . . 9  setvar  j
17 vz . . . . . . . . 9  setvar  z
1816, 17wel 2168 . . . . . . . 8  wff  j  e.  z
1918, 16wex 1506 . . . . . . 7  wff  E. j 
j  e.  z
20 vx . . . . . . . . 9  setvar  x
2120cv 1363 . . . . . . . 8  class  x
2221cpw 3606 . . . . . . 7  class  ~P x
2319, 17, 22crab 2479 . . . . . 6  class  { z  e.  ~P x  |  E. j  j  e.  z }
24 cmap 6716 . . . . . 6  class  ^m
2523, 1, 24co 5925 . . . . 5  class  ( { z  e.  ~P x  |  E. j  j  e.  z }  ^m  A
)
2615, 10, 25wral 2475 . . . 4  wff  A. f  e.  ( { z  e. 
~P x  |  E. j  j  e.  z }  ^m  A ) E. g A. y  e.  A  ( g `  y )  e.  ( f `  y )
274, 26wa 104 . . 3  wff  ( A  e.  _V  /\  A. f  e.  ( {
z  e.  ~P x  |  E. j  j  e.  z }  ^m  A
) E. g A. y  e.  A  (
g `  y )  e.  ( f `  y
) )
2827, 20cab 2182 . 2  class  { x  |  ( A  e. 
_V  /\  A. f  e.  ( { z  e. 
~P x  |  E. j  j  e.  z }  ^m  A ) E. g A. y  e.  A  ( g `  y )  e.  ( f `  y ) ) }
292, 28wceq 1364 1  wff AC  A  =  { x  |  ( A  e.  _V  /\  A. f  e.  ( { z  e.  ~P x  |  E. j  j  e.  z }  ^m  A
) E. g A. y  e.  A  (
g `  y )  e.  ( f `  y
) ) }
Colors of variables: wff set class
This definition is referenced by:  acnrcl  7284  acneq  7285  isacnm  7286
  Copyright terms: Public domain W3C validator