ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isacnm GIF version

Theorem isacnm 7393
Description: The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
isacnm ((𝑋𝑉𝐴𝑊) → (𝑋AC 𝐴 ↔ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑧,𝑗,𝐴   𝑓,𝑋,𝑔,𝑥,𝑧
Allowed substitution hints:   𝑉(𝑥,𝑧,𝑓,𝑔,𝑗)   𝑊(𝑥,𝑧,𝑓,𝑔,𝑗)   𝑋(𝑗)

Proof of Theorem isacnm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pweq 3652 . . . . . . 7 (𝑦 = 𝑋 → 𝒫 𝑦 = 𝒫 𝑋)
21rabeqdv 2793 . . . . . 6 (𝑦 = 𝑋 → {𝑧 ∈ 𝒫 𝑦 ∣ ∃𝑗 𝑗𝑧} = {𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗𝑧})
32oveq1d 6022 . . . . 5 (𝑦 = 𝑋 → ({𝑧 ∈ 𝒫 𝑦 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴) = ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴))
43raleqdv 2734 . . . 4 (𝑦 = 𝑋 → (∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑦 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥) ↔ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
54anbi2d 464 . . 3 (𝑦 = 𝑋 → ((𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑦 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)) ↔ (𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))))
6 df-acnm 7360 . . 3 AC 𝐴 = {𝑦 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑦 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))}
75, 6elab2g 2950 . 2 (𝑋𝑉 → (𝑋AC 𝐴 ↔ (𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))))
8 elex 2811 . . 3 (𝐴𝑊𝐴 ∈ V)
9 biid 171 . . . 4 ((𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)) ↔ (𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
109baib 924 . . 3 (𝐴 ∈ V → ((𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)) ↔ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
118, 10syl 14 . 2 (𝐴𝑊 → ((𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)) ↔ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
127, 11sylan9bb 462 1 ((𝑋𝑉𝐴𝑊) → (𝑋AC 𝐴 ↔ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wex 1538  wcel 2200  wral 2508  {crab 2512  Vcvv 2799  𝒫 cpw 3649  cfv 5318  (class class class)co 6007  𝑚 cmap 6803  AC wacn 7358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6010  df-acnm 7360
This theorem is referenced by:  finacn  7394  acnccim  7466
  Copyright terms: Public domain W3C validator