ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isacnm GIF version

Theorem isacnm 7322
Description: The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
isacnm ((𝑋𝑉𝐴𝑊) → (𝑋AC 𝐴 ↔ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑧,𝑗,𝐴   𝑓,𝑋,𝑔,𝑥,𝑧
Allowed substitution hints:   𝑉(𝑥,𝑧,𝑓,𝑔,𝑗)   𝑊(𝑥,𝑧,𝑓,𝑔,𝑗)   𝑋(𝑗)

Proof of Theorem isacnm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pweq 3620 . . . . . . 7 (𝑦 = 𝑋 → 𝒫 𝑦 = 𝒫 𝑋)
21rabeqdv 2767 . . . . . 6 (𝑦 = 𝑋 → {𝑧 ∈ 𝒫 𝑦 ∣ ∃𝑗 𝑗𝑧} = {𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗𝑧})
32oveq1d 5966 . . . . 5 (𝑦 = 𝑋 → ({𝑧 ∈ 𝒫 𝑦 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴) = ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴))
43raleqdv 2709 . . . 4 (𝑦 = 𝑋 → (∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑦 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥) ↔ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
54anbi2d 464 . . 3 (𝑦 = 𝑋 → ((𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑦 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)) ↔ (𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))))
6 df-acnm 7294 . . 3 AC 𝐴 = {𝑦 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑦 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))}
75, 6elab2g 2921 . 2 (𝑋𝑉 → (𝑋AC 𝐴 ↔ (𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))))
8 elex 2784 . . 3 (𝐴𝑊𝐴 ∈ V)
9 biid 171 . . . 4 ((𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)) ↔ (𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
109baib 921 . . 3 (𝐴 ∈ V → ((𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)) ↔ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
118, 10syl 14 . 2 (𝐴𝑊 → ((𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)) ↔ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
127, 11sylan9bb 462 1 ((𝑋𝑉𝐴𝑊) → (𝑋AC 𝐴 ↔ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗𝑧} ↑𝑚 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wex 1516  wcel 2177  wral 2485  {crab 2489  Vcvv 2773  𝒫 cpw 3617  cfv 5276  (class class class)co 5951  𝑚 cmap 6742  AC wacn 7292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-iota 5237  df-fv 5284  df-ov 5954  df-acnm 7294
This theorem is referenced by:  finacn  7323  acnccim  7391
  Copyright terms: Public domain W3C validator