| Step | Hyp | Ref
| Expression |
| 1 | | pweq 3609 |
. . . . . . 7
⊢ (𝑦 = 𝑋 → 𝒫 𝑦 = 𝒫 𝑋) |
| 2 | 1 | rabeqdv 2757 |
. . . . . 6
⊢ (𝑦 = 𝑋 → {𝑧 ∈ 𝒫 𝑦 ∣ ∃𝑗 𝑗 ∈ 𝑧} = {𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗 ∈ 𝑧}) |
| 3 | 2 | oveq1d 5940 |
. . . . 5
⊢ (𝑦 = 𝑋 → ({𝑧 ∈ 𝒫 𝑦 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐴) = ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐴)) |
| 4 | 3 | raleqdv 2699 |
. . . 4
⊢ (𝑦 = 𝑋 → (∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑦 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥) ↔ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥))) |
| 5 | 4 | anbi2d 464 |
. . 3
⊢ (𝑦 = 𝑋 → ((𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑦 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥)) ↔ (𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥)))) |
| 6 | | df-acnm 7258 |
. . 3
⊢ AC
𝐴 = {𝑦 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑦 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥))} |
| 7 | 5, 6 | elab2g 2911 |
. 2
⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ AC 𝐴 ↔ (𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥)))) |
| 8 | | elex 2774 |
. . 3
⊢ (𝐴 ∈ 𝑊 → 𝐴 ∈ V) |
| 9 | | biid 171 |
. . . 4
⊢ ((𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥)) ↔ (𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥))) |
| 10 | 9 | baib 920 |
. . 3
⊢ (𝐴 ∈ V → ((𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥)) ↔ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥))) |
| 11 | 8, 10 | syl 14 |
. 2
⊢ (𝐴 ∈ 𝑊 → ((𝐴 ∈ V ∧ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥)) ↔ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥))) |
| 12 | 7, 11 | sylan9bb 462 |
1
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑋 ∈ AC 𝐴 ↔ ∀𝑓 ∈ ({𝑧 ∈ 𝒫 𝑋 ∣ ∃𝑗 𝑗 ∈ 𝑧} ↑𝑚 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥))) |