Detailed syntax breakdown of Definition df-bits
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cbits 12105 | 
. 2
class
bits | 
| 2 |   | vn | 
. . 3
setvar 𝑛 | 
| 3 |   | cz 9326 | 
. . 3
class
ℤ | 
| 4 |   | c2 9041 | 
. . . . . 6
class
2 | 
| 5 | 2 | cv 1363 | 
. . . . . . . 8
class 𝑛 | 
| 6 |   | vm | 
. . . . . . . . . 10
setvar 𝑚 | 
| 7 | 6 | cv 1363 | 
. . . . . . . . 9
class 𝑚 | 
| 8 |   | cexp 10630 | 
. . . . . . . . 9
class
↑ | 
| 9 | 4, 7, 8 | co 5922 | 
. . . . . . . 8
class
(2↑𝑚) | 
| 10 |   | cdiv 8699 | 
. . . . . . . 8
class 
/ | 
| 11 | 5, 9, 10 | co 5922 | 
. . . . . . 7
class (𝑛 / (2↑𝑚)) | 
| 12 |   | cfl 10358 | 
. . . . . . 7
class
⌊ | 
| 13 | 11, 12 | cfv 5258 | 
. . . . . 6
class
(⌊‘(𝑛 /
(2↑𝑚))) | 
| 14 |   | cdvds 11952 | 
. . . . . 6
class 
∥ | 
| 15 | 4, 13, 14 | wbr 4033 | 
. . . . 5
wff 2 ∥
(⌊‘(𝑛 /
(2↑𝑚))) | 
| 16 | 15 | wn 3 | 
. . . 4
wff  ¬ 2
∥ (⌊‘(𝑛 /
(2↑𝑚))) | 
| 17 |   | cn0 9249 | 
. . . 4
class
ℕ0 | 
| 18 | 16, 6, 17 | crab 2479 | 
. . 3
class {𝑚 ∈ ℕ0
∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑚)))} | 
| 19 | 2, 3, 18 | cmpt 4094 | 
. 2
class (𝑛 ∈ ℤ ↦ {𝑚 ∈ ℕ0
∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑚)))}) | 
| 20 | 1, 19 | wceq 1364 | 
1
wff bits =
(𝑛 ∈ ℤ ↦
{𝑚 ∈
ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑚)))}) |