ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bitsfval GIF version

Theorem bitsfval 12107
Description: Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsfval (𝑁 ∈ ℤ → (bits‘𝑁) = {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))})
Distinct variable group:   𝑚,𝑁

Proof of Theorem bitsfval
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 fvoveq1 5945 . . . . 5 (𝑛 = 𝑁 → (⌊‘(𝑛 / (2↑𝑚))) = (⌊‘(𝑁 / (2↑𝑚))))
21breq2d 4045 . . . 4 (𝑛 = 𝑁 → (2 ∥ (⌊‘(𝑛 / (2↑𝑚))) ↔ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))))
32notbid 668 . . 3 (𝑛 = 𝑁 → (¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑚))) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))))
43rabbidv 2752 . 2 (𝑛 = 𝑁 → {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑚)))} = {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))})
5 df-bits 12106 . 2 bits = (𝑛 ∈ ℤ ↦ {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑚)))})
6 nn0ex 9255 . . 3 0 ∈ V
76rabex 4177 . 2 {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))} ∈ V
84, 5, 7fvmpt 5638 1 (𝑁 ∈ ℤ → (bits‘𝑁) = {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1364  wcel 2167  {crab 2479   class class class wbr 4033  cfv 5258  (class class class)co 5922   / cdiv 8699  2c2 9041  0cn0 9249  cz 9326  cfl 10358  cexp 10630  cdvds 11952  bitscbits 12105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-i2m1 7984
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-ov 5925  df-inn 8991  df-n0 9250  df-bits 12106
This theorem is referenced by:  bitsval  12108
  Copyright terms: Public domain W3C validator