ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bitsfval GIF version

Theorem bitsfval 12419
Description: Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsfval (𝑁 ∈ ℤ → (bits‘𝑁) = {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))})
Distinct variable group:   𝑚,𝑁

Proof of Theorem bitsfval
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 fvoveq1 5997 . . . . 5 (𝑛 = 𝑁 → (⌊‘(𝑛 / (2↑𝑚))) = (⌊‘(𝑁 / (2↑𝑚))))
21breq2d 4074 . . . 4 (𝑛 = 𝑁 → (2 ∥ (⌊‘(𝑛 / (2↑𝑚))) ↔ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))))
32notbid 671 . . 3 (𝑛 = 𝑁 → (¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑚))) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))))
43rabbidv 2768 . 2 (𝑛 = 𝑁 → {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑚)))} = {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))})
5 df-bits 12418 . 2 bits = (𝑛 ∈ ℤ ↦ {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑚)))})
6 nn0ex 9343 . . 3 0 ∈ V
76rabex 4207 . 2 {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))} ∈ V
84, 5, 7fvmpt 5684 1 (𝑁 ∈ ℤ → (bits‘𝑁) = {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1375  wcel 2180  {crab 2492   class class class wbr 4062  cfv 5294  (class class class)co 5974   / cdiv 8787  2c2 9129  0cn0 9337  cz 9414  cfl 10455  cexp 10727  cdvds 12264  bitscbits 12417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-i2m1 8072
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-rab 2497  df-v 2781  df-sbc 3009  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-iota 5254  df-fun 5296  df-fv 5302  df-ov 5977  df-inn 9079  df-n0 9338  df-bits 12418
This theorem is referenced by:  bitsval  12420
  Copyright terms: Public domain W3C validator