ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bitsfval GIF version

Theorem bitsfval 12297
Description: Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsfval (𝑁 ∈ ℤ → (bits‘𝑁) = {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))})
Distinct variable group:   𝑚,𝑁

Proof of Theorem bitsfval
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 fvoveq1 5974 . . . . 5 (𝑛 = 𝑁 → (⌊‘(𝑛 / (2↑𝑚))) = (⌊‘(𝑁 / (2↑𝑚))))
21breq2d 4059 . . . 4 (𝑛 = 𝑁 → (2 ∥ (⌊‘(𝑛 / (2↑𝑚))) ↔ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))))
32notbid 669 . . 3 (𝑛 = 𝑁 → (¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑚))) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))))
43rabbidv 2762 . 2 (𝑛 = 𝑁 → {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑚)))} = {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))})
5 df-bits 12296 . 2 bits = (𝑛 ∈ ℤ ↦ {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑚)))})
6 nn0ex 9308 . . 3 0 ∈ V
76rabex 4192 . 2 {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))} ∈ V
84, 5, 7fvmpt 5663 1 (𝑁 ∈ ℤ → (bits‘𝑁) = {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1373  wcel 2177  {crab 2489   class class class wbr 4047  cfv 5276  (class class class)co 5951   / cdiv 8752  2c2 9094  0cn0 9302  cz 9379  cfl 10418  cexp 10690  cdvds 12142  bitscbits 12295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-i2m1 8037
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3000  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-iota 5237  df-fun 5278  df-fv 5284  df-ov 5954  df-inn 9044  df-n0 9303  df-bits 12296
This theorem is referenced by:  bitsval  12298
  Copyright terms: Public domain W3C validator