| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitsfval | GIF version | ||
| Description: Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| Ref | Expression |
|---|---|
| bitsfval | ⊢ (𝑁 ∈ ℤ → (bits‘𝑁) = {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvoveq1 5974 | . . . . 5 ⊢ (𝑛 = 𝑁 → (⌊‘(𝑛 / (2↑𝑚))) = (⌊‘(𝑁 / (2↑𝑚)))) | |
| 2 | 1 | breq2d 4059 | . . . 4 ⊢ (𝑛 = 𝑁 → (2 ∥ (⌊‘(𝑛 / (2↑𝑚))) ↔ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) |
| 3 | 2 | notbid 669 | . . 3 ⊢ (𝑛 = 𝑁 → (¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑚))) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) |
| 4 | 3 | rabbidv 2762 | . 2 ⊢ (𝑛 = 𝑁 → {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑚)))} = {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))}) |
| 5 | df-bits 12296 | . 2 ⊢ bits = (𝑛 ∈ ℤ ↦ {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑚)))}) | |
| 6 | nn0ex 9308 | . . 3 ⊢ ℕ0 ∈ V | |
| 7 | 6 | rabex 4192 | . 2 ⊢ {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))} ∈ V |
| 8 | 4, 5, 7 | fvmpt 5663 | 1 ⊢ (𝑁 ∈ ℤ → (bits‘𝑁) = {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))}) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1373 ∈ wcel 2177 {crab 2489 class class class wbr 4047 ‘cfv 5276 (class class class)co 5951 / cdiv 8752 2c2 9094 ℕ0cn0 9302 ℤcz 9379 ⌊cfl 10418 ↑cexp 10690 ∥ cdvds 12142 bitscbits 12295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-i2m1 8037 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3000 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-iota 5237 df-fun 5278 df-fv 5284 df-ov 5954 df-inn 9044 df-n0 9303 df-bits 12296 |
| This theorem is referenced by: bitsval 12298 |
| Copyright terms: Public domain | W3C validator |