ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bitsf GIF version

Theorem bitsf 12465
Description: The bits function is a function from integers to subsets of nonnegative integers. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsf bits:ℤ⟶𝒫 ℕ0

Proof of Theorem bitsf
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-bits 12460 . 2 bits = (𝑛 ∈ ℤ ↦ {𝑘 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑘)))})
2 nn0ex 9383 . . . 4 0 ∈ V
3 ssrab2 3309 . . . 4 {𝑘 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑘)))} ⊆ ℕ0
42, 3elpwi2 4242 . . 3 {𝑘 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑘)))} ∈ 𝒫 ℕ0
54a1i 9 . 2 (𝑛 ∈ ℤ → {𝑘 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑘)))} ∈ 𝒫 ℕ0)
61, 5fmpti 5789 1 bits:ℤ⟶𝒫 ℕ0
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 2200  {crab 2512  Vcvv 2799  𝒫 cpw 3649   class class class wbr 4083  wf 5314  cfv 5318  (class class class)co 6007   / cdiv 8827  2c2 9169  0cn0 9377  cz 9454  cfl 10496  cexp 10768  cdvds 12306  bitscbits 12459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-i2m1 8112
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-inn 9119  df-n0 9378  df-bits 12460
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator