| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitsf | GIF version | ||
| Description: The bits function is a function from integers to subsets of nonnegative integers. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| Ref | Expression |
|---|---|
| bitsf | ⊢ bits:ℤ⟶𝒫 ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bits 12460 | . 2 ⊢ bits = (𝑛 ∈ ℤ ↦ {𝑘 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑘)))}) | |
| 2 | nn0ex 9383 | . . . 4 ⊢ ℕ0 ∈ V | |
| 3 | ssrab2 3309 | . . . 4 ⊢ {𝑘 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑘)))} ⊆ ℕ0 | |
| 4 | 2, 3 | elpwi2 4242 | . . 3 ⊢ {𝑘 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑘)))} ∈ 𝒫 ℕ0 |
| 5 | 4 | a1i 9 | . 2 ⊢ (𝑛 ∈ ℤ → {𝑘 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑘)))} ∈ 𝒫 ℕ0) |
| 6 | 1, 5 | fmpti 5789 | 1 ⊢ bits:ℤ⟶𝒫 ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∈ wcel 2200 {crab 2512 Vcvv 2799 𝒫 cpw 3649 class class class wbr 4083 ⟶wf 5314 ‘cfv 5318 (class class class)co 6007 / cdiv 8827 2c2 9169 ℕ0cn0 9377 ℤcz 9454 ⌊cfl 10496 ↑cexp 10768 ∥ cdvds 12306 bitscbits 12459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-i2m1 8112 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-inn 9119 df-n0 9378 df-bits 12460 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |