| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitsval | GIF version | ||
| Description: Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| Ref | Expression |
|---|---|
| bitsval | ⊢ (𝑀 ∈ (bits‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bits 12460 | . . . 4 ⊢ bits = (𝑛 ∈ ℤ ↦ {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑚)))}) | |
| 2 | 1 | mptrcl 5719 | . . 3 ⊢ (𝑀 ∈ (bits‘𝑁) → 𝑁 ∈ ℤ) |
| 3 | bitsfval 12461 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (bits‘𝑁) = {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))}) | |
| 4 | 3 | eleq2d 2299 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑀 ∈ (bits‘𝑁) ↔ 𝑀 ∈ {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))})) |
| 5 | oveq2 6015 | . . . . . . . . 9 ⊢ (𝑚 = 𝑀 → (2↑𝑚) = (2↑𝑀)) | |
| 6 | 5 | oveq2d 6023 | . . . . . . . 8 ⊢ (𝑚 = 𝑀 → (𝑁 / (2↑𝑚)) = (𝑁 / (2↑𝑀))) |
| 7 | 6 | fveq2d 5633 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → (⌊‘(𝑁 / (2↑𝑚))) = (⌊‘(𝑁 / (2↑𝑀)))) |
| 8 | 7 | breq2d 4095 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (2 ∥ (⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ (⌊‘(𝑁 / (2↑𝑀))))) |
| 9 | 8 | notbid 671 | . . . . 5 ⊢ (𝑚 = 𝑀 → (¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀))))) |
| 10 | 9 | elrab 2959 | . . . 4 ⊢ (𝑀 ∈ {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))} ↔ (𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀))))) |
| 11 | 4, 10 | bitrdi 196 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑀 ∈ (bits‘𝑁) ↔ (𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))) |
| 12 | 2, 11 | biadanii 615 | . 2 ⊢ (𝑀 ∈ (bits‘𝑁) ↔ (𝑁 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))) |
| 13 | 3anass 1006 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))) ↔ (𝑁 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))) | |
| 14 | 12, 13 | bitr4i 187 | 1 ⊢ (𝑀 ∈ (bits‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀))))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 {crab 2512 class class class wbr 4083 ‘cfv 5318 (class class class)co 6007 / cdiv 8827 2c2 9169 ℕ0cn0 9377 ℤcz 9454 ⌊cfl 10496 ↑cexp 10768 ∥ cdvds 12306 bitscbits 12459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-i2m1 8112 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6010 df-inn 9119 df-n0 9378 df-bits 12460 |
| This theorem is referenced by: bitsval2 12463 bitsss 12464 bitsfzo 12474 bitsmod 12475 bitscmp 12477 |
| Copyright terms: Public domain | W3C validator |