| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitsval | GIF version | ||
| Description: Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| Ref | Expression |
|---|---|
| bitsval | ⊢ (𝑀 ∈ (bits‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bits 12296 | . . . 4 ⊢ bits = (𝑛 ∈ ℤ ↦ {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑚)))}) | |
| 2 | 1 | mptrcl 5669 | . . 3 ⊢ (𝑀 ∈ (bits‘𝑁) → 𝑁 ∈ ℤ) |
| 3 | bitsfval 12297 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (bits‘𝑁) = {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))}) | |
| 4 | 3 | eleq2d 2276 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑀 ∈ (bits‘𝑁) ↔ 𝑀 ∈ {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))})) |
| 5 | oveq2 5959 | . . . . . . . . 9 ⊢ (𝑚 = 𝑀 → (2↑𝑚) = (2↑𝑀)) | |
| 6 | 5 | oveq2d 5967 | . . . . . . . 8 ⊢ (𝑚 = 𝑀 → (𝑁 / (2↑𝑚)) = (𝑁 / (2↑𝑀))) |
| 7 | 6 | fveq2d 5587 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → (⌊‘(𝑁 / (2↑𝑚))) = (⌊‘(𝑁 / (2↑𝑀)))) |
| 8 | 7 | breq2d 4059 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (2 ∥ (⌊‘(𝑁 / (2↑𝑚))) ↔ 2 ∥ (⌊‘(𝑁 / (2↑𝑀))))) |
| 9 | 8 | notbid 669 | . . . . 5 ⊢ (𝑚 = 𝑀 → (¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀))))) |
| 10 | 9 | elrab 2930 | . . . 4 ⊢ (𝑀 ∈ {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))} ↔ (𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀))))) |
| 11 | 4, 10 | bitrdi 196 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑀 ∈ (bits‘𝑁) ↔ (𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))) |
| 12 | 2, 11 | biadanii 613 | . 2 ⊢ (𝑀 ∈ (bits‘𝑁) ↔ (𝑁 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))) |
| 13 | 3anass 985 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))) ↔ (𝑁 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀)))))) | |
| 14 | 12, 13 | bitr4i 187 | 1 ⊢ (𝑀 ∈ (bits‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀))))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 {crab 2489 class class class wbr 4047 ‘cfv 5276 (class class class)co 5951 / cdiv 8752 2c2 9094 ℕ0cn0 9302 ℤcz 9379 ⌊cfl 10418 ↑cexp 10690 ∥ cdvds 12142 bitscbits 12295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-i2m1 8037 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3000 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fv 5284 df-ov 5954 df-inn 9044 df-n0 9303 df-bits 12296 |
| This theorem is referenced by: bitsval2 12299 bitsss 12300 bitsfzo 12310 bitsmod 12311 bitscmp 12313 |
| Copyright terms: Public domain | W3C validator |