![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cjf | GIF version |
Description: Domain and codomain of the conjugate function. (Contributed by Mario Carneiro, 6-Nov-2013.) |
Ref | Expression |
---|---|
cjf | ⊢ ∗:ℂ⟶ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cj 10882 | . 2 ⊢ ∗ = (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑥 + 𝑦) ∈ ℝ ∧ (i · (𝑥 − 𝑦)) ∈ ℝ))) | |
2 | cju 8947 | . . 3 ⊢ (𝑥 ∈ ℂ → ∃!𝑦 ∈ ℂ ((𝑥 + 𝑦) ∈ ℝ ∧ (i · (𝑥 − 𝑦)) ∈ ℝ)) | |
3 | riotacl 5865 | . . 3 ⊢ (∃!𝑦 ∈ ℂ ((𝑥 + 𝑦) ∈ ℝ ∧ (i · (𝑥 − 𝑦)) ∈ ℝ) → (℩𝑦 ∈ ℂ ((𝑥 + 𝑦) ∈ ℝ ∧ (i · (𝑥 − 𝑦)) ∈ ℝ)) ∈ ℂ) | |
4 | 2, 3 | syl 14 | . 2 ⊢ (𝑥 ∈ ℂ → (℩𝑦 ∈ ℂ ((𝑥 + 𝑦) ∈ ℝ ∧ (i · (𝑥 − 𝑦)) ∈ ℝ)) ∈ ℂ) |
5 | 1, 4 | fmpti 5688 | 1 ⊢ ∗:ℂ⟶ℂ |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ∈ wcel 2160 ∃!wreu 2470 ⟶wf 5231 ℩crio 5850 (class class class)co 5895 ℂcc 7838 ℝcr 7839 ici 7842 + caddc 7843 · cmul 7845 − cmin 8157 ∗ccj 10879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7931 ax-resscn 7932 ax-1cn 7933 ax-1re 7934 ax-icn 7935 ax-addcl 7936 ax-addrcl 7937 ax-mulcl 7938 ax-mulrcl 7939 ax-addcom 7940 ax-mulcom 7941 ax-addass 7942 ax-mulass 7943 ax-distr 7944 ax-i2m1 7945 ax-0lt1 7946 ax-1rid 7947 ax-0id 7948 ax-rnegex 7949 ax-precex 7950 ax-cnre 7951 ax-pre-ltirr 7952 ax-pre-lttrn 7954 ax-pre-apti 7955 ax-pre-ltadd 7956 ax-pre-mulgt0 7957 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-fv 5243 df-riota 5851 df-ov 5898 df-oprab 5899 df-mpo 5900 df-pnf 8023 df-mnf 8024 df-ltxr 8026 df-sub 8159 df-neg 8160 df-reap 8561 df-cj 10882 |
This theorem is referenced by: cjcl 10888 cjcn2 11355 climcj 11360 fsumcj 11513 cnfldstr 13863 cnfldcj 13868 cjcncf 14527 dvcjbr 14624 dvcj 14625 dvfre 14626 dvmptcjx 14638 |
Copyright terms: Public domain | W3C validator |