ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-cn GIF version

Definition df-cn 13691
Description: Define a function on two topologies whose value is the set of continuous mappings from the first topology to the second. Based on definition of continuous function in [Munkres] p. 102. See iscn 13700 for the predicate form. (Contributed by NM, 17-Oct-2006.)
Assertion
Ref Expression
df-cn Cn = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 (𝑓𝑦) ∈ 𝑗})
Distinct variable group:   𝑗,𝑘,𝑓,𝑦

Detailed syntax breakdown of Definition df-cn
StepHypRef Expression
1 ccn 13688 . 2 class Cn
2 vj . . 3 setvar 𝑗
3 vk . . 3 setvar 𝑘
4 ctop 13500 . . 3 class Top
5 vf . . . . . . . . 9 setvar 𝑓
65cv 1352 . . . . . . . 8 class 𝑓
76ccnv 4626 . . . . . . 7 class 𝑓
8 vy . . . . . . . 8 setvar 𝑦
98cv 1352 . . . . . . 7 class 𝑦
107, 9cima 4630 . . . . . 6 class (𝑓𝑦)
112cv 1352 . . . . . 6 class 𝑗
1210, 11wcel 2148 . . . . 5 wff (𝑓𝑦) ∈ 𝑗
133cv 1352 . . . . 5 class 𝑘
1412, 8, 13wral 2455 . . . 4 wff 𝑦𝑘 (𝑓𝑦) ∈ 𝑗
1513cuni 3810 . . . . 5 class 𝑘
1611cuni 3810 . . . . 5 class 𝑗
17 cmap 6648 . . . . 5 class 𝑚
1815, 16, 17co 5875 . . . 4 class ( 𝑘𝑚 𝑗)
1914, 5, 18crab 2459 . . 3 class {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 (𝑓𝑦) ∈ 𝑗}
202, 3, 4, 4, 19cmpo 5877 . 2 class (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 (𝑓𝑦) ∈ 𝑗})
211, 20wceq 1353 1 wff Cn = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 (𝑓𝑦) ∈ 𝑗})
Colors of variables: wff set class
This definition is referenced by:  cnfval  13697  iscn2  13703  ishmeo  13807
  Copyright terms: Public domain W3C validator