ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ishmeo GIF version

Theorem ishmeo 13675
Description: The predicate F is a homeomorphism between topology 𝐽 and topology 𝐾. Proposition of [BourbakiTop1] p. I.2. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
ishmeo (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽)))

Proof of Theorem ishmeo
Dummy variables 𝑓 𝑗 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-hmeo 13672 . . 3 Homeo = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (𝑗 Cn 𝑘) ∣ 𝑓 ∈ (𝑘 Cn 𝑗)})
21elmpocl 6066 . 2 (𝐹 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
3 df-cn 13559 . . . 4 Cn = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 (𝑓𝑦) ∈ 𝑗})
43elmpocl 6066 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
54adantr 276 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽)) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
6 hmeofvalg 13674 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)})
76eleq2d 2247 . . 3 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐹 ∈ (𝐽Homeo𝐾) ↔ 𝐹 ∈ {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)}))
8 cnveq 4800 . . . . 5 (𝑓 = 𝐹𝑓 = 𝐹)
98eleq1d 2246 . . . 4 (𝑓 = 𝐹 → (𝑓 ∈ (𝐾 Cn 𝐽) ↔ 𝐹 ∈ (𝐾 Cn 𝐽)))
109elrab 2893 . . 3 (𝐹 ∈ {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)} ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽)))
117, 10bitrdi 196 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽))))
122, 5, 11pm5.21nii 704 1 (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1353  wcel 2148  wral 2455  {crab 2459   cuni 3809  ccnv 4624  cima 4628  (class class class)co 5872  𝑚 cmap 6645  Topctop 13366   Cn ccn 13556  Homeochmeo 13671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-iun 3888  df-br 4003  df-opab 4064  df-mpt 4065  df-id 4292  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-ima 4638  df-iota 5177  df-fun 5217  df-fn 5218  df-f 5219  df-fv 5223  df-ov 5875  df-oprab 5876  df-mpo 5877  df-1st 6138  df-2nd 6139  df-map 6647  df-top 13367  df-topon 13380  df-cn 13559  df-hmeo 13672
This theorem is referenced by:  hmeocn  13676  hmeocnvcn  13677  hmeocnv  13678  hmeores  13686  hmeoco  13687  idhmeo  13688  txhmeo  13690  txswaphmeo  13692  cnrehmeocntop  13964
  Copyright terms: Public domain W3C validator