| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ishmeo | GIF version | ||
| Description: The predicate F is a homeomorphism between topology 𝐽 and topology 𝐾. Proposition of [BourbakiTop1] p. I.2. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| ishmeo | ⊢ (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ◡𝐹 ∈ (𝐾 Cn 𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-hmeo 14621 | . . 3 ⊢ Homeo = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (𝑗 Cn 𝑘) ∣ ◡𝑓 ∈ (𝑘 Cn 𝑗)}) | |
| 2 | 1 | elmpocl 6122 | . 2 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)) |
| 3 | df-cn 14508 | . . . 4 ⊢ Cn = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (∪ 𝑘 ↑𝑚 ∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 (◡𝑓 “ 𝑦) ∈ 𝑗}) | |
| 4 | 3 | elmpocl 6122 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)) |
| 5 | 4 | adantr 276 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ ◡𝐹 ∈ (𝐾 Cn 𝐽)) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)) |
| 6 | hmeofvalg 14623 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)}) | |
| 7 | 6 | eleq2d 2266 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐹 ∈ (𝐽Homeo𝐾) ↔ 𝐹 ∈ {𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)})) |
| 8 | cnveq 4841 | . . . . 5 ⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) | |
| 9 | 8 | eleq1d 2265 | . . . 4 ⊢ (𝑓 = 𝐹 → (◡𝑓 ∈ (𝐾 Cn 𝐽) ↔ ◡𝐹 ∈ (𝐾 Cn 𝐽))) |
| 10 | 9 | elrab 2920 | . . 3 ⊢ (𝐹 ∈ {𝑓 ∈ (𝐽 Cn 𝐾) ∣ ◡𝑓 ∈ (𝐾 Cn 𝐽)} ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ◡𝐹 ∈ (𝐾 Cn 𝐽))) |
| 11 | 7, 10 | bitrdi 196 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ◡𝐹 ∈ (𝐾 Cn 𝐽)))) |
| 12 | 2, 5, 11 | pm5.21nii 705 | 1 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ◡𝐹 ∈ (𝐾 Cn 𝐽))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∀wral 2475 {crab 2479 ∪ cuni 3840 ◡ccnv 4663 “ cima 4667 (class class class)co 5925 ↑𝑚 cmap 6716 Topctop 14317 Cn ccn 14505 Homeochmeo 14620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-map 6718 df-top 14318 df-topon 14331 df-cn 14508 df-hmeo 14621 |
| This theorem is referenced by: hmeocn 14625 hmeocnvcn 14626 hmeocnv 14627 hmeores 14635 hmeoco 14636 idhmeo 14637 txhmeo 14639 txswaphmeo 14641 cnrehmeocntop 14930 |
| Copyright terms: Public domain | W3C validator |