ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ishmeo GIF version

Theorem ishmeo 13098
Description: The predicate F is a homeomorphism between topology 𝐽 and topology 𝐾. Proposition of [BourbakiTop1] p. I.2. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
ishmeo (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽)))

Proof of Theorem ishmeo
Dummy variables 𝑓 𝑗 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-hmeo 13095 . . 3 Homeo = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (𝑗 Cn 𝑘) ∣ 𝑓 ∈ (𝑘 Cn 𝑗)})
21elmpocl 6047 . 2 (𝐹 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
3 df-cn 12982 . . . 4 Cn = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 (𝑓𝑦) ∈ 𝑗})
43elmpocl 6047 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
54adantr 274 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽)) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
6 hmeofvalg 13097 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽Homeo𝐾) = {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)})
76eleq2d 2240 . . 3 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐹 ∈ (𝐽Homeo𝐾) ↔ 𝐹 ∈ {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)}))
8 cnveq 4785 . . . . 5 (𝑓 = 𝐹𝑓 = 𝐹)
98eleq1d 2239 . . . 4 (𝑓 = 𝐹 → (𝑓 ∈ (𝐾 Cn 𝐽) ↔ 𝐹 ∈ (𝐾 Cn 𝐽)))
109elrab 2886 . . 3 (𝐹 ∈ {𝑓 ∈ (𝐽 Cn 𝐾) ∣ 𝑓 ∈ (𝐾 Cn 𝐽)} ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽)))
117, 10bitrdi 195 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽))))
122, 5, 11pm5.21nii 699 1 (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽)))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1348  wcel 2141  wral 2448  {crab 2452   cuni 3796  ccnv 4610  cima 4614  (class class class)co 5853  𝑚 cmap 6626  Topctop 12789   Cn ccn 12979  Homeochmeo 13094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-map 6628  df-top 12790  df-topon 12803  df-cn 12982  df-hmeo 13095
This theorem is referenced by:  hmeocn  13099  hmeocnvcn  13100  hmeocnv  13101  hmeores  13109  hmeoco  13110  idhmeo  13111  txhmeo  13113  txswaphmeo  13115  cnrehmeocntop  13387
  Copyright terms: Public domain W3C validator