![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iscn | GIF version |
Description: The predicate "the class πΉ is a continuous function from topology π½ to topology πΎ". Definition of continuous function in [Munkres] p. 102. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
iscn | β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (πΉ β (π½ Cn πΎ) β (πΉ:πβΆπ β§ βπ¦ β πΎ (β‘πΉ β π¦) β π½))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfval 13733 | . . 3 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (π½ Cn πΎ) = {π β (π βπ π) β£ βπ¦ β πΎ (β‘π β π¦) β π½}) | |
2 | 1 | eleq2d 2247 | . 2 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (πΉ β (π½ Cn πΎ) β πΉ β {π β (π βπ π) β£ βπ¦ β πΎ (β‘π β π¦) β π½})) |
3 | cnveq 4803 | . . . . . . 7 β’ (π = πΉ β β‘π = β‘πΉ) | |
4 | 3 | imaeq1d 4971 | . . . . . 6 β’ (π = πΉ β (β‘π β π¦) = (β‘πΉ β π¦)) |
5 | 4 | eleq1d 2246 | . . . . 5 β’ (π = πΉ β ((β‘π β π¦) β π½ β (β‘πΉ β π¦) β π½)) |
6 | 5 | ralbidv 2477 | . . . 4 β’ (π = πΉ β (βπ¦ β πΎ (β‘π β π¦) β π½ β βπ¦ β πΎ (β‘πΉ β π¦) β π½)) |
7 | 6 | elrab 2895 | . . 3 β’ (πΉ β {π β (π βπ π) β£ βπ¦ β πΎ (β‘π β π¦) β π½} β (πΉ β (π βπ π) β§ βπ¦ β πΎ (β‘πΉ β π¦) β π½)) |
8 | toponmax 13564 | . . . . 5 β’ (πΎ β (TopOnβπ) β π β πΎ) | |
9 | toponmax 13564 | . . . . 5 β’ (π½ β (TopOnβπ) β π β π½) | |
10 | elmapg 6663 | . . . . 5 β’ ((π β πΎ β§ π β π½) β (πΉ β (π βπ π) β πΉ:πβΆπ)) | |
11 | 8, 9, 10 | syl2anr 290 | . . . 4 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (πΉ β (π βπ π) β πΉ:πβΆπ)) |
12 | 11 | anbi1d 465 | . . 3 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β ((πΉ β (π βπ π) β§ βπ¦ β πΎ (β‘πΉ β π¦) β π½) β (πΉ:πβΆπ β§ βπ¦ β πΎ (β‘πΉ β π¦) β π½))) |
13 | 7, 12 | bitrid 192 | . 2 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (πΉ β {π β (π βπ π) β£ βπ¦ β πΎ (β‘π β π¦) β π½} β (πΉ:πβΆπ β§ βπ¦ β πΎ (β‘πΉ β π¦) β π½))) |
14 | 2, 13 | bitrd 188 | 1 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (πΉ β (π½ Cn πΎ) β (πΉ:πβΆπ β§ βπ¦ β πΎ (β‘πΉ β π¦) β π½))) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β wb 105 = wceq 1353 β wcel 2148 βwral 2455 {crab 2459 β‘ccnv 4627 β cima 4631 βΆwf 5214 βcfv 5218 (class class class)co 5877 βπ cmap 6650 TopOnctopon 13549 Cn ccn 13724 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-map 6652 df-top 13537 df-topon 13550 df-cn 13727 |
This theorem is referenced by: iscn2 13739 cnf2 13744 tgcn 13747 ssidcn 13749 cnntr 13764 cnss1 13765 cnss2 13766 cncnp 13769 cnrest 13774 cnrest2 13775 cndis 13780 tx1cn 13808 tx2cn 13809 txdis1cn 13817 |
Copyright terms: Public domain | W3C validator |