ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscn GIF version

Theorem iscn 12355
Description: The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾". Definition of continuous function in [Munkres] p. 102. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
iscn ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
Distinct variable groups:   𝑦,𝐽   𝑦,𝐾   𝑦,𝑋   𝑦,𝐹   𝑦,𝑌

Proof of Theorem iscn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cnfval 12352 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 Cn 𝐾) = {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽})
21eleq2d 2207 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽}))
3 cnveq 4708 . . . . . . 7 (𝑓 = 𝐹𝑓 = 𝐹)
43imaeq1d 4875 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
54eleq1d 2206 . . . . 5 (𝑓 = 𝐹 → ((𝑓𝑦) ∈ 𝐽 ↔ (𝐹𝑦) ∈ 𝐽))
65ralbidv 2435 . . . 4 (𝑓 = 𝐹 → (∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽 ↔ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽))
76elrab 2835 . . 3 (𝐹 ∈ {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽} ↔ (𝐹 ∈ (𝑌𝑚 𝑋) ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽))
8 toponmax 12181 . . . . 5 (𝐾 ∈ (TopOn‘𝑌) → 𝑌𝐾)
9 toponmax 12181 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
10 elmapg 6548 . . . . 5 ((𝑌𝐾𝑋𝐽) → (𝐹 ∈ (𝑌𝑚 𝑋) ↔ 𝐹:𝑋𝑌))
118, 9, 10syl2anr 288 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝑌𝑚 𝑋) ↔ 𝐹:𝑋𝑌))
1211anbi1d 460 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹 ∈ (𝑌𝑚 𝑋) ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
137, 12syl5bb 191 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽} ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
142, 13bitrd 187 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wral 2414  {crab 2418  ccnv 4533  cima 4537  wf 5114  cfv 5118  (class class class)co 5767  𝑚 cmap 6535  TopOnctopon 12166   Cn ccn 12343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-map 6537  df-top 12154  df-topon 12167  df-cn 12346
This theorem is referenced by:  iscn2  12358  cnf2  12363  tgcn  12366  ssidcn  12368  cnntr  12383  cnss1  12384  cnss2  12385  cncnp  12388  cnrest  12393  cnrest2  12394  cndis  12399  tx1cn  12427  tx2cn  12428  txdis1cn  12436
  Copyright terms: Public domain W3C validator