| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iscn | GIF version | ||
| Description: The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾". Definition of continuous function in [Munkres] p. 102. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| iscn | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfval 14853 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 Cn 𝐾) = {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽}) | |
| 2 | 1 | eleq2d 2299 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽})) |
| 3 | cnveq 4893 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) | |
| 4 | 3 | imaeq1d 5063 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (◡𝑓 “ 𝑦) = (◡𝐹 “ 𝑦)) |
| 5 | 4 | eleq1d 2298 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((◡𝑓 “ 𝑦) ∈ 𝐽 ↔ (◡𝐹 “ 𝑦) ∈ 𝐽)) |
| 6 | 5 | ralbidv 2530 | . . . 4 ⊢ (𝑓 = 𝐹 → (∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽 ↔ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽)) |
| 7 | 6 | elrab 2959 | . . 3 ⊢ (𝐹 ∈ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽} ↔ (𝐹 ∈ (𝑌 ↑𝑚 𝑋) ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽)) |
| 8 | toponmax 14684 | . . . . 5 ⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 ∈ 𝐾) | |
| 9 | toponmax 14684 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
| 10 | elmapg 6798 | . . . . 5 ⊢ ((𝑌 ∈ 𝐾 ∧ 𝑋 ∈ 𝐽) → (𝐹 ∈ (𝑌 ↑𝑚 𝑋) ↔ 𝐹:𝑋⟶𝑌)) | |
| 11 | 8, 9, 10 | syl2anr 290 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝑌 ↑𝑚 𝑋) ↔ 𝐹:𝑋⟶𝑌)) |
| 12 | 11 | anbi1d 465 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹 ∈ (𝑌 ↑𝑚 𝑋) ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
| 13 | 7, 12 | bitrid 192 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽} ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
| 14 | 2, 13 | bitrd 188 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∀wral 2508 {crab 2512 ◡ccnv 4715 “ cima 4719 ⟶wf 5310 ‘cfv 5314 (class class class)co 5994 ↑𝑚 cmap 6785 TopOnctopon 14669 Cn ccn 14844 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-map 6787 df-top 14657 df-topon 14670 df-cn 14847 |
| This theorem is referenced by: iscn2 14859 cnf2 14864 tgcn 14867 ssidcn 14869 cnntr 14884 cnss1 14885 cnss2 14886 cncnp 14889 cnrest 14894 cnrest2 14895 cndis 14900 tx1cn 14928 tx2cn 14929 txdis1cn 14937 |
| Copyright terms: Public domain | W3C validator |