Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscn GIF version

Theorem iscn 12425
 Description: The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾". Definition of continuous function in [Munkres] p. 102. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
iscn ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
Distinct variable groups:   𝑦,𝐽   𝑦,𝐾   𝑦,𝑋   𝑦,𝐹   𝑦,𝑌

Proof of Theorem iscn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cnfval 12422 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 Cn 𝐾) = {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽})
21eleq2d 2210 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽}))
3 cnveq 4722 . . . . . . 7 (𝑓 = 𝐹𝑓 = 𝐹)
43imaeq1d 4889 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
54eleq1d 2209 . . . . 5 (𝑓 = 𝐹 → ((𝑓𝑦) ∈ 𝐽 ↔ (𝐹𝑦) ∈ 𝐽))
65ralbidv 2439 . . . 4 (𝑓 = 𝐹 → (∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽 ↔ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽))
76elrab 2845 . . 3 (𝐹 ∈ {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽} ↔ (𝐹 ∈ (𝑌𝑚 𝑋) ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽))
8 toponmax 12251 . . . . 5 (𝐾 ∈ (TopOn‘𝑌) → 𝑌𝐾)
9 toponmax 12251 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
10 elmapg 6564 . . . . 5 ((𝑌𝐾𝑋𝐽) → (𝐹 ∈ (𝑌𝑚 𝑋) ↔ 𝐹:𝑋𝑌))
118, 9, 10syl2anr 288 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝑌𝑚 𝑋) ↔ 𝐹:𝑋𝑌))
1211anbi1d 461 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹 ∈ (𝑌𝑚 𝑋) ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
137, 12syl5bb 191 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽} ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
142, 13bitrd 187 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1332   ∈ wcel 1481  ∀wral 2417  {crab 2421  ◡ccnv 4547   “ cima 4551  ⟶wf 5128  ‘cfv 5132  (class class class)co 5783   ↑𝑚 cmap 6551  TopOnctopon 12236   Cn ccn 12413 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4055  ax-pow 4107  ax-pr 4140  ax-un 4364  ax-setind 4461 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2692  df-sbc 2915  df-csb 3009  df-dif 3079  df-un 3081  df-in 3083  df-ss 3090  df-pw 3518  df-sn 3539  df-pr 3540  df-op 3542  df-uni 3746  df-iun 3824  df-br 3939  df-opab 3999  df-mpt 4000  df-id 4224  df-xp 4554  df-rel 4555  df-cnv 4556  df-co 4557  df-dm 4558  df-rn 4559  df-res 4560  df-ima 4561  df-iota 5097  df-fun 5134  df-fn 5135  df-f 5136  df-fv 5140  df-ov 5786  df-oprab 5787  df-mpo 5788  df-1st 6047  df-2nd 6048  df-map 6553  df-top 12224  df-topon 12237  df-cn 12416 This theorem is referenced by:  iscn2  12428  cnf2  12433  tgcn  12436  ssidcn  12438  cnntr  12453  cnss1  12454  cnss2  12455  cncnp  12458  cnrest  12463  cnrest2  12464  cndis  12469  tx1cn  12497  tx2cn  12498  txdis1cn  12506
 Copyright terms: Public domain W3C validator