Step | Hyp | Ref
| Expression |
1 | | df-cn 13691 |
. . 3
β’ Cn =
(π β Top, π β Top β¦ {π β (βͺ π
βπ βͺ π) β£ βπ¦ β π (β‘π β π¦) β π}) |
2 | 1 | a1i 9 |
. 2
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β Cn = (π β Top, π β Top β¦ {π β (βͺ π βπ
βͺ π) β£ βπ¦ β π (β‘π β π¦) β π})) |
3 | | simprr 531 |
. . . . . 6
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (π = π½ β§ π = πΎ)) β π = πΎ) |
4 | 3 | unieqd 3821 |
. . . . 5
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (π = π½ β§ π = πΎ)) β βͺ π = βͺ
πΎ) |
5 | | toponuni 13518 |
. . . . . 6
β’ (πΎ β (TopOnβπ) β π = βͺ πΎ) |
6 | 5 | ad2antlr 489 |
. . . . 5
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (π = π½ β§ π = πΎ)) β π = βͺ πΎ) |
7 | 4, 6 | eqtr4d 2213 |
. . . 4
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (π = π½ β§ π = πΎ)) β βͺ π = π) |
8 | | simprl 529 |
. . . . . 6
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (π = π½ β§ π = πΎ)) β π = π½) |
9 | 8 | unieqd 3821 |
. . . . 5
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (π = π½ β§ π = πΎ)) β βͺ π = βͺ
π½) |
10 | | toponuni 13518 |
. . . . . 6
β’ (π½ β (TopOnβπ) β π = βͺ π½) |
11 | 10 | ad2antrr 488 |
. . . . 5
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (π = π½ β§ π = πΎ)) β π = βͺ π½) |
12 | 9, 11 | eqtr4d 2213 |
. . . 4
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (π = π½ β§ π = πΎ)) β βͺ π = π) |
13 | 7, 12 | oveq12d 5893 |
. . 3
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (π = π½ β§ π = πΎ)) β (βͺ
π
βπ βͺ π) = (π βπ π)) |
14 | 8 | eleq2d 2247 |
. . . 4
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (π = π½ β§ π = πΎ)) β ((β‘π β π¦) β π β (β‘π β π¦) β π½)) |
15 | 3, 14 | raleqbidv 2685 |
. . 3
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (π = π½ β§ π = πΎ)) β (βπ¦ β π (β‘π β π¦) β π β βπ¦ β πΎ (β‘π β π¦) β π½)) |
16 | 13, 15 | rabeqbidv 2733 |
. 2
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (π = π½ β§ π = πΎ)) β {π β (βͺ π βπ
βͺ π) β£ βπ¦ β π (β‘π β π¦) β π} = {π β (π βπ π) β£ βπ¦ β πΎ (β‘π β π¦) β π½}) |
17 | | topontop 13517 |
. . 3
β’ (π½ β (TopOnβπ) β π½ β Top) |
18 | 17 | adantr 276 |
. 2
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β π½ β Top) |
19 | | topontop 13517 |
. . 3
β’ (πΎ β (TopOnβπ) β πΎ β Top) |
20 | 19 | adantl 277 |
. 2
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β πΎ β Top) |
21 | | fnmap 6655 |
. . . 4
β’
βπ Fn (V Γ V) |
22 | | toponmax 13528 |
. . . . . 6
β’ (πΎ β (TopOnβπ) β π β πΎ) |
23 | 22 | elexd 2751 |
. . . . 5
β’ (πΎ β (TopOnβπ) β π β V) |
24 | 23 | adantl 277 |
. . . 4
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β π β V) |
25 | | toponmax 13528 |
. . . . . 6
β’ (π½ β (TopOnβπ) β π β π½) |
26 | 25 | elexd 2751 |
. . . . 5
β’ (π½ β (TopOnβπ) β π β V) |
27 | 26 | adantr 276 |
. . . 4
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β π β V) |
28 | | fnovex 5908 |
. . . 4
β’ ((
βπ Fn (V Γ V) β§ π β V β§ π β V) β (π βπ π) β V) |
29 | 21, 24, 27, 28 | mp3an2i 1342 |
. . 3
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (π βπ π) β V) |
30 | | rabexg 4147 |
. . 3
β’ ((π βπ
π) β V β {π β (π βπ π) β£ βπ¦ β πΎ (β‘π β π¦) β π½} β V) |
31 | 29, 30 | syl 14 |
. 2
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β {π β (π βπ π) β£ βπ¦ β πΎ (β‘π β π¦) β π½} β V) |
32 | 2, 16, 18, 20, 31 | ovmpod 6002 |
1
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (π½ Cn πΎ) = {π β (π βπ π) β£ βπ¦ β πΎ (β‘π β π¦) β π½}) |