ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnfval GIF version

Theorem cnfval 14666
Description: The set of all continuous functions from topology 𝐽 to topology 𝐾. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnfval ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 Cn 𝐾) = {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽})
Distinct variable groups:   𝑦,𝑓,𝐾   𝑓,𝑋,𝑦   𝑓,𝑌,𝑦   𝑓,𝐽,𝑦

Proof of Theorem cnfval
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cn 14660 . . 3 Cn = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 (𝑓𝑦) ∈ 𝑗})
21a1i 9 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → Cn = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 (𝑓𝑦) ∈ 𝑗}))
3 simprr 531 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑘 = 𝐾)
43unieqd 3861 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑘 = 𝐾)
5 toponuni 14487 . . . . . 6 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
65ad2antlr 489 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑌 = 𝐾)
74, 6eqtr4d 2241 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑘 = 𝑌)
8 simprl 529 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑗 = 𝐽)
98unieqd 3861 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑗 = 𝐽)
10 toponuni 14487 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1110ad2antrr 488 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑋 = 𝐽)
129, 11eqtr4d 2241 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑗 = 𝑋)
137, 12oveq12d 5962 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → ( 𝑘𝑚 𝑗) = (𝑌𝑚 𝑋))
148eleq2d 2275 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → ((𝑓𝑦) ∈ 𝑗 ↔ (𝑓𝑦) ∈ 𝐽))
153, 14raleqbidv 2718 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → (∀𝑦𝑘 (𝑓𝑦) ∈ 𝑗 ↔ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽))
1613, 15rabeqbidv 2767 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 (𝑓𝑦) ∈ 𝑗} = {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽})
17 topontop 14486 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
1817adantr 276 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝐽 ∈ Top)
19 topontop 14486 . . 3 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
2019adantl 277 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝐾 ∈ Top)
21 fnmap 6742 . . . 4 𝑚 Fn (V × V)
22 toponmax 14497 . . . . . 6 (𝐾 ∈ (TopOn‘𝑌) → 𝑌𝐾)
2322elexd 2785 . . . . 5 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 ∈ V)
2423adantl 277 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝑌 ∈ V)
25 toponmax 14497 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
2625elexd 2785 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ V)
2726adantr 276 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝑋 ∈ V)
28 fnovex 5977 . . . 4 (( ↑𝑚 Fn (V × V) ∧ 𝑌 ∈ V ∧ 𝑋 ∈ V) → (𝑌𝑚 𝑋) ∈ V)
2921, 24, 27, 28mp3an2i 1355 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑌𝑚 𝑋) ∈ V)
30 rabexg 4187 . . 3 ((𝑌𝑚 𝑋) ∈ V → {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽} ∈ V)
3129, 30syl 14 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽} ∈ V)
322, 16, 18, 20, 31ovmpod 6073 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 Cn 𝐾) = {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2176  wral 2484  {crab 2488  Vcvv 2772   cuni 3850   × cxp 4673  ccnv 4674  cima 4678   Fn wfn 5266  cfv 5271  (class class class)co 5944  cmpo 5946  𝑚 cmap 6735  Topctop 14469  TopOnctopon 14482   Cn ccn 14657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-map 6737  df-top 14470  df-topon 14483  df-cn 14660
This theorem is referenced by:  cnovex  14668  iscn  14669
  Copyright terms: Public domain W3C validator