ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnfval GIF version

Theorem cnfval 14868
Description: The set of all continuous functions from topology 𝐽 to topology 𝐾. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnfval ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 Cn 𝐾) = {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽})
Distinct variable groups:   𝑦,𝑓,𝐾   𝑓,𝑋,𝑦   𝑓,𝑌,𝑦   𝑓,𝐽,𝑦

Proof of Theorem cnfval
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cn 14862 . . 3 Cn = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 (𝑓𝑦) ∈ 𝑗})
21a1i 9 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → Cn = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 (𝑓𝑦) ∈ 𝑗}))
3 simprr 531 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑘 = 𝐾)
43unieqd 3899 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑘 = 𝐾)
5 toponuni 14689 . . . . . 6 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
65ad2antlr 489 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑌 = 𝐾)
74, 6eqtr4d 2265 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑘 = 𝑌)
8 simprl 529 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑗 = 𝐽)
98unieqd 3899 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑗 = 𝐽)
10 toponuni 14689 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1110ad2antrr 488 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑋 = 𝐽)
129, 11eqtr4d 2265 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑗 = 𝑋)
137, 12oveq12d 6019 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → ( 𝑘𝑚 𝑗) = (𝑌𝑚 𝑋))
148eleq2d 2299 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → ((𝑓𝑦) ∈ 𝑗 ↔ (𝑓𝑦) ∈ 𝐽))
153, 14raleqbidv 2744 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → (∀𝑦𝑘 (𝑓𝑦) ∈ 𝑗 ↔ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽))
1613, 15rabeqbidv 2794 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 (𝑓𝑦) ∈ 𝑗} = {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽})
17 topontop 14688 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
1817adantr 276 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝐽 ∈ Top)
19 topontop 14688 . . 3 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
2019adantl 277 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝐾 ∈ Top)
21 fnmap 6802 . . . 4 𝑚 Fn (V × V)
22 toponmax 14699 . . . . . 6 (𝐾 ∈ (TopOn‘𝑌) → 𝑌𝐾)
2322elexd 2813 . . . . 5 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 ∈ V)
2423adantl 277 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝑌 ∈ V)
25 toponmax 14699 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
2625elexd 2813 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ V)
2726adantr 276 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝑋 ∈ V)
28 fnovex 6034 . . . 4 (( ↑𝑚 Fn (V × V) ∧ 𝑌 ∈ V ∧ 𝑋 ∈ V) → (𝑌𝑚 𝑋) ∈ V)
2921, 24, 27, 28mp3an2i 1376 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑌𝑚 𝑋) ∈ V)
30 rabexg 4227 . . 3 ((𝑌𝑚 𝑋) ∈ V → {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽} ∈ V)
3129, 30syl 14 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽} ∈ V)
322, 16, 18, 20, 31ovmpod 6132 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 Cn 𝐾) = {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wral 2508  {crab 2512  Vcvv 2799   cuni 3888   × cxp 4717  ccnv 4718  cima 4722   Fn wfn 5313  cfv 5318  (class class class)co 6001  cmpo 6003  𝑚 cmap 6795  Topctop 14671  TopOnctopon 14684   Cn ccn 14859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-map 6797  df-top 14672  df-topon 14685  df-cn 14862
This theorem is referenced by:  cnovex  14870  iscn  14871
  Copyright terms: Public domain W3C validator