Step | Hyp | Ref
| Expression |
1 | | df-cn 12828 |
. . 3
⊢ Cn =
(𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (∪ 𝑘
↑𝑚 ∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 (◡𝑓 “ 𝑦) ∈ 𝑗}) |
2 | 1 | a1i 9 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → Cn = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (∪ 𝑘 ↑𝑚
∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 (◡𝑓 “ 𝑦) ∈ 𝑗})) |
3 | | simprr 522 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → 𝑘 = 𝐾) |
4 | 3 | unieqd 3800 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → ∪ 𝑘 = ∪
𝐾) |
5 | | toponuni 12653 |
. . . . . 6
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐾) |
6 | 5 | ad2antlr 481 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → 𝑌 = ∪ 𝐾) |
7 | 4, 6 | eqtr4d 2201 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → ∪ 𝑘 = 𝑌) |
8 | | simprl 521 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → 𝑗 = 𝐽) |
9 | 8 | unieqd 3800 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → ∪ 𝑗 = ∪
𝐽) |
10 | | toponuni 12653 |
. . . . . 6
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
11 | 10 | ad2antrr 480 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → 𝑋 = ∪ 𝐽) |
12 | 9, 11 | eqtr4d 2201 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → ∪ 𝑗 = 𝑋) |
13 | 7, 12 | oveq12d 5860 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → (∪
𝑘
↑𝑚 ∪ 𝑗) = (𝑌 ↑𝑚 𝑋)) |
14 | 8 | eleq2d 2236 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → ((◡𝑓 “ 𝑦) ∈ 𝑗 ↔ (◡𝑓 “ 𝑦) ∈ 𝐽)) |
15 | 3, 14 | raleqbidv 2673 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → (∀𝑦 ∈ 𝑘 (◡𝑓 “ 𝑦) ∈ 𝑗 ↔ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽)) |
16 | 13, 15 | rabeqbidv 2721 |
. 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → {𝑓 ∈ (∪ 𝑘 ↑𝑚
∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 (◡𝑓 “ 𝑦) ∈ 𝑗} = {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽}) |
17 | | topontop 12652 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
18 | 17 | adantr 274 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝐽 ∈ Top) |
19 | | topontop 12652 |
. . 3
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) |
20 | 19 | adantl 275 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝐾 ∈ Top) |
21 | | fnmap 6621 |
. . . 4
⊢
↑𝑚 Fn (V × V) |
22 | | toponmax 12663 |
. . . . . 6
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 ∈ 𝐾) |
23 | 22 | elexd 2739 |
. . . . 5
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 ∈ V) |
24 | 23 | adantl 275 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝑌 ∈ V) |
25 | | toponmax 12663 |
. . . . . 6
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) |
26 | 25 | elexd 2739 |
. . . . 5
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ V) |
27 | 26 | adantr 274 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝑋 ∈ V) |
28 | | fnovex 5875 |
. . . 4
⊢ ((
↑𝑚 Fn (V × V) ∧ 𝑌 ∈ V ∧ 𝑋 ∈ V) → (𝑌 ↑𝑚 𝑋) ∈ V) |
29 | 21, 24, 27, 28 | mp3an2i 1332 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑌 ↑𝑚 𝑋) ∈ V) |
30 | | rabexg 4125 |
. . 3
⊢ ((𝑌 ↑𝑚
𝑋) ∈ V → {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽} ∈ V) |
31 | 29, 30 | syl 14 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽} ∈ V) |
32 | 2, 16, 18, 20, 31 | ovmpod 5969 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 Cn 𝐾) = {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽}) |