Detailed syntax breakdown of Definition df-cnp
Step | Hyp | Ref
| Expression |
1 | | ccnp 12980 |
. 2
class
CnP |
2 | | vj |
. . 3
setvar 𝑗 |
3 | | vk |
. . 3
setvar 𝑘 |
4 | | ctop 12789 |
. . 3
class
Top |
5 | | vx |
. . . 4
setvar 𝑥 |
6 | 2 | cv 1347 |
. . . . 5
class 𝑗 |
7 | 6 | cuni 3796 |
. . . 4
class ∪ 𝑗 |
8 | 5 | cv 1347 |
. . . . . . . . 9
class 𝑥 |
9 | | vf |
. . . . . . . . . 10
setvar 𝑓 |
10 | 9 | cv 1347 |
. . . . . . . . 9
class 𝑓 |
11 | 8, 10 | cfv 5198 |
. . . . . . . 8
class (𝑓‘𝑥) |
12 | | vy |
. . . . . . . . 9
setvar 𝑦 |
13 | 12 | cv 1347 |
. . . . . . . 8
class 𝑦 |
14 | 11, 13 | wcel 2141 |
. . . . . . 7
wff (𝑓‘𝑥) ∈ 𝑦 |
15 | | vg |
. . . . . . . . . 10
setvar 𝑔 |
16 | 5, 15 | wel 2142 |
. . . . . . . . 9
wff 𝑥 ∈ 𝑔 |
17 | 15 | cv 1347 |
. . . . . . . . . . 11
class 𝑔 |
18 | 10, 17 | cima 4614 |
. . . . . . . . . 10
class (𝑓 “ 𝑔) |
19 | 18, 13 | wss 3121 |
. . . . . . . . 9
wff (𝑓 “ 𝑔) ⊆ 𝑦 |
20 | 16, 19 | wa 103 |
. . . . . . . 8
wff (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦) |
21 | 20, 15, 6 | wrex 2449 |
. . . . . . 7
wff
∃𝑔 ∈
𝑗 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦) |
22 | 14, 21 | wi 4 |
. . . . . 6
wff ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝑗 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦)) |
23 | 3 | cv 1347 |
. . . . . 6
class 𝑘 |
24 | 22, 12, 23 | wral 2448 |
. . . . 5
wff
∀𝑦 ∈
𝑘 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝑗 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦)) |
25 | 23 | cuni 3796 |
. . . . . 6
class ∪ 𝑘 |
26 | | cmap 6626 |
. . . . . 6
class
↑𝑚 |
27 | 25, 7, 26 | co 5853 |
. . . . 5
class (∪ 𝑘
↑𝑚 ∪ 𝑗) |
28 | 24, 9, 27 | crab 2452 |
. . . 4
class {𝑓 ∈ (∪ 𝑘
↑𝑚 ∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝑗 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))} |
29 | 5, 7, 28 | cmpt 4050 |
. . 3
class (𝑥 ∈ ∪ 𝑗
↦ {𝑓 ∈ (∪ 𝑘
↑𝑚 ∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝑗 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))}) |
30 | 2, 3, 4, 4, 29 | cmpo 5855 |
. 2
class (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 ∈ ∪ 𝑗 ↦ {𝑓 ∈ (∪ 𝑘 ↑𝑚
∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝑗 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))})) |
31 | 1, 30 | wceq 1348 |
1
wff CnP =
(𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 ∈ ∪ 𝑗
↦ {𝑓 ∈ (∪ 𝑘
↑𝑚 ∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝑗 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))})) |