Detailed syntax breakdown of Definition df-cnp
| Step | Hyp | Ref
 | Expression | 
| 1 |   | ccnp 14422 | 
. 2
class 
CnP | 
| 2 |   | vj | 
. . 3
setvar 𝑗 | 
| 3 |   | vk | 
. . 3
setvar 𝑘 | 
| 4 |   | ctop 14233 | 
. . 3
class
Top | 
| 5 |   | vx | 
. . . 4
setvar 𝑥 | 
| 6 | 2 | cv 1363 | 
. . . . 5
class 𝑗 | 
| 7 | 6 | cuni 3839 | 
. . . 4
class ∪ 𝑗 | 
| 8 | 5 | cv 1363 | 
. . . . . . . . 9
class 𝑥 | 
| 9 |   | vf | 
. . . . . . . . . 10
setvar 𝑓 | 
| 10 | 9 | cv 1363 | 
. . . . . . . . 9
class 𝑓 | 
| 11 | 8, 10 | cfv 5258 | 
. . . . . . . 8
class (𝑓‘𝑥) | 
| 12 |   | vy | 
. . . . . . . . 9
setvar 𝑦 | 
| 13 | 12 | cv 1363 | 
. . . . . . . 8
class 𝑦 | 
| 14 | 11, 13 | wcel 2167 | 
. . . . . . 7
wff (𝑓‘𝑥) ∈ 𝑦 | 
| 15 |   | vg | 
. . . . . . . . . 10
setvar 𝑔 | 
| 16 | 5, 15 | wel 2168 | 
. . . . . . . . 9
wff 𝑥 ∈ 𝑔 | 
| 17 | 15 | cv 1363 | 
. . . . . . . . . . 11
class 𝑔 | 
| 18 | 10, 17 | cima 4666 | 
. . . . . . . . . 10
class (𝑓 “ 𝑔) | 
| 19 | 18, 13 | wss 3157 | 
. . . . . . . . 9
wff (𝑓 “ 𝑔) ⊆ 𝑦 | 
| 20 | 16, 19 | wa 104 | 
. . . . . . . 8
wff (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦) | 
| 21 | 20, 15, 6 | wrex 2476 | 
. . . . . . 7
wff
∃𝑔 ∈
𝑗 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦) | 
| 22 | 14, 21 | wi 4 | 
. . . . . 6
wff ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝑗 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦)) | 
| 23 | 3 | cv 1363 | 
. . . . . 6
class 𝑘 | 
| 24 | 22, 12, 23 | wral 2475 | 
. . . . 5
wff
∀𝑦 ∈
𝑘 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝑗 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦)) | 
| 25 | 23 | cuni 3839 | 
. . . . . 6
class ∪ 𝑘 | 
| 26 |   | cmap 6707 | 
. . . . . 6
class 
↑𝑚 | 
| 27 | 25, 7, 26 | co 5922 | 
. . . . 5
class (∪ 𝑘
↑𝑚 ∪ 𝑗) | 
| 28 | 24, 9, 27 | crab 2479 | 
. . . 4
class {𝑓 ∈ (∪ 𝑘
↑𝑚 ∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝑗 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))} | 
| 29 | 5, 7, 28 | cmpt 4094 | 
. . 3
class (𝑥 ∈ ∪ 𝑗
↦ {𝑓 ∈ (∪ 𝑘
↑𝑚 ∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝑗 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))}) | 
| 30 | 2, 3, 4, 4, 29 | cmpo 5924 | 
. 2
class (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 ∈ ∪ 𝑗 ↦ {𝑓 ∈ (∪ 𝑘 ↑𝑚
∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝑗 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))})) | 
| 31 | 1, 30 | wceq 1364 | 
1
wff  CnP =
(𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 ∈ ∪ 𝑗
↦ {𝑓 ∈ (∪ 𝑘
↑𝑚 ∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝑗 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))})) |