ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnprcl2k GIF version

Theorem cnprcl2k 14753
Description: Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.)
Assertion
Ref Expression
cnprcl2k ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃𝑋)

Proof of Theorem cnprcl2k
Dummy variables 𝑥 𝑓 𝑔 𝑗 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 14561 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
213ad2ant1 1021 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐽 ∈ Top)
3 simp2 1001 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐾 ∈ Top)
4 uniexg 4494 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ V)
543ad2ant1 1021 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐽 ∈ V)
6 mptexg 5822 . . . . . . 7 ( 𝐽 ∈ V → (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) ∈ V)
75, 6syl 14 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) ∈ V)
8 unieq 3865 . . . . . . . 8 (𝑗 = 𝐽 𝑗 = 𝐽)
98oveq2d 5973 . . . . . . . . 9 (𝑗 = 𝐽 → ( 𝑘𝑚 𝑗) = ( 𝑘𝑚 𝐽))
10 rexeq 2704 . . . . . . . . . . 11 (𝑗 = 𝐽 → (∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦) ↔ ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦)))
1110imbi2d 230 . . . . . . . . . 10 (𝑗 = 𝐽 → (((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦)) ↔ ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))))
1211ralbidv 2507 . . . . . . . . 9 (𝑗 = 𝐽 → (∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦)) ↔ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))))
139, 12rabeqbidv 2768 . . . . . . . 8 (𝑗 = 𝐽 → {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))} = {𝑓 ∈ ( 𝑘𝑚 𝐽) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))})
148, 13mpteq12dv 4134 . . . . . . 7 (𝑗 = 𝐽 → (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) = (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝑘𝑚 𝐽) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
15 unieq 3865 . . . . . . . . . 10 (𝑘 = 𝐾 𝑘 = 𝐾)
1615oveq1d 5972 . . . . . . . . 9 (𝑘 = 𝐾 → ( 𝑘𝑚 𝐽) = ( 𝐾𝑚 𝐽))
17 raleq 2703 . . . . . . . . 9 (𝑘 = 𝐾 → (∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦)) ↔ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))))
1816, 17rabeqbidv 2768 . . . . . . . 8 (𝑘 = 𝐾 → {𝑓 ∈ ( 𝑘𝑚 𝐽) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))} = {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))})
1918mpteq2dv 4143 . . . . . . 7 (𝑘 = 𝐾 → (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝑘𝑚 𝐽) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) = (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
20 df-cnp 14736 . . . . . . 7 CnP = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
2114, 19, 20ovmpog 6093 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) ∈ V) → (𝐽 CnP 𝐾) = (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
222, 3, 7, 21syl3anc 1250 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐽 CnP 𝐾) = (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
2322dmeqd 4889 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → dom (𝐽 CnP 𝐾) = dom (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
24 eqid 2206 . . . . 5 (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) = (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))})
2524dmmptss 5188 . . . 4 dom (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) ⊆ 𝐽
2623, 25eqsstrdi 3249 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → dom (𝐽 CnP 𝐾) ⊆ 𝐽)
27 toponuni 14562 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
28273ad2ant1 1021 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑋 = 𝐽)
2926, 28sseqtrrd 3236 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → dom (𝐽 CnP 𝐾) ⊆ 𝑋)
30 mptrel 4814 . . . 4 Rel (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))})
3122releqd 4767 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (Rel (𝐽 CnP 𝐾) ↔ Rel (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))})))
3230, 31mpbiri 168 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → Rel (𝐽 CnP 𝐾))
33 simp3 1002 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
34 relelfvdm 5621 . . 3 ((Rel (𝐽 CnP 𝐾) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 ∈ dom (𝐽 CnP 𝐾))
3532, 33, 34syl2anc 411 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 ∈ dom (𝐽 CnP 𝐾))
3629, 35sseldd 3198 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  wral 2485  wrex 2486  {crab 2489  Vcvv 2773  wss 3170   cuni 3856  cmpt 4113  dom cdm 4683  cima 4686  Rel wrel 4688  cfv 5280  (class class class)co 5957  𝑚 cmap 6748  Topctop 14544  TopOnctopon 14557   CnP ccnp 14733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-topon 14558  df-cnp 14736
This theorem is referenced by:  cnpf2  14754  cnptopco  14769  cncnp  14777  cnptoprest2  14787  metcnpi  15062  metcnpi2  15063  metcnpi3  15064  limccnpcntop  15222  limccnp2lem  15223  limccnp2cntop  15224
  Copyright terms: Public domain W3C validator