| Step | Hyp | Ref
| Expression |
| 1 | | topontop 14404 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
| 2 | 1 | 3ad2ant1 1020 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐽 ∈ Top) |
| 3 | | simp2 1000 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐾 ∈ Top) |
| 4 | | uniexg 4484 |
. . . . . . . 8
⊢ (𝐽 ∈ (TopOn‘𝑋) → ∪ 𝐽
∈ V) |
| 5 | 4 | 3ad2ant1 1020 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ∪ 𝐽 ∈ V) |
| 6 | | mptexg 5799 |
. . . . . . 7
⊢ (∪ 𝐽
∈ V → (𝑥 ∈
∪ 𝐽 ↦ {𝑓 ∈ (∪ 𝐾 ↑𝑚
∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝐽 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))}) ∈ V) |
| 7 | 5, 6 | syl 14 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝑥 ∈ ∪ 𝐽 ↦ {𝑓 ∈ (∪ 𝐾 ↑𝑚
∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝐽 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))}) ∈ V) |
| 8 | | unieq 3858 |
. . . . . . . 8
⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪
𝐽) |
| 9 | 8 | oveq2d 5950 |
. . . . . . . . 9
⊢ (𝑗 = 𝐽 → (∪ 𝑘 ↑𝑚
∪ 𝑗) = (∪ 𝑘 ↑𝑚
∪ 𝐽)) |
| 10 | | rexeq 2702 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝐽 → (∃𝑔 ∈ 𝑗 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦) ↔ ∃𝑔 ∈ 𝐽 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))) |
| 11 | 10 | imbi2d 230 |
. . . . . . . . . 10
⊢ (𝑗 = 𝐽 → (((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝑗 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦)) ↔ ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝐽 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦)))) |
| 12 | 11 | ralbidv 2505 |
. . . . . . . . 9
⊢ (𝑗 = 𝐽 → (∀𝑦 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝑗 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦)) ↔ ∀𝑦 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝐽 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦)))) |
| 13 | 9, 12 | rabeqbidv 2766 |
. . . . . . . 8
⊢ (𝑗 = 𝐽 → {𝑓 ∈ (∪ 𝑘 ↑𝑚
∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝑗 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))} = {𝑓 ∈ (∪ 𝑘 ↑𝑚
∪ 𝐽) ∣ ∀𝑦 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝐽 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))}) |
| 14 | 8, 13 | mpteq12dv 4125 |
. . . . . . 7
⊢ (𝑗 = 𝐽 → (𝑥 ∈ ∪ 𝑗 ↦ {𝑓 ∈ (∪ 𝑘 ↑𝑚
∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝑗 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))}) = (𝑥 ∈ ∪ 𝐽 ↦ {𝑓 ∈ (∪ 𝑘 ↑𝑚
∪ 𝐽) ∣ ∀𝑦 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝐽 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))})) |
| 15 | | unieq 3858 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐾 → ∪ 𝑘 = ∪
𝐾) |
| 16 | 15 | oveq1d 5949 |
. . . . . . . . 9
⊢ (𝑘 = 𝐾 → (∪ 𝑘 ↑𝑚
∪ 𝐽) = (∪ 𝐾 ↑𝑚
∪ 𝐽)) |
| 17 | | raleq 2701 |
. . . . . . . . 9
⊢ (𝑘 = 𝐾 → (∀𝑦 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝐽 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦)) ↔ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝐽 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦)))) |
| 18 | 16, 17 | rabeqbidv 2766 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → {𝑓 ∈ (∪ 𝑘 ↑𝑚
∪ 𝐽) ∣ ∀𝑦 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝐽 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))} = {𝑓 ∈ (∪ 𝐾 ↑𝑚
∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝐽 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))}) |
| 19 | 18 | mpteq2dv 4134 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (𝑥 ∈ ∪ 𝐽 ↦ {𝑓 ∈ (∪ 𝑘 ↑𝑚
∪ 𝐽) ∣ ∀𝑦 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝐽 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))}) = (𝑥 ∈ ∪ 𝐽 ↦ {𝑓 ∈ (∪ 𝐾 ↑𝑚
∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝐽 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))})) |
| 20 | | df-cnp 14579 |
. . . . . . 7
⊢ CnP =
(𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 ∈ ∪ 𝑗
↦ {𝑓 ∈ (∪ 𝑘
↑𝑚 ∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝑗 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))})) |
| 21 | 14, 19, 20 | ovmpog 6070 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ (𝑥 ∈ ∪ 𝐽
↦ {𝑓 ∈ (∪ 𝐾
↑𝑚 ∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝐽 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))}) ∈ V) → (𝐽 CnP 𝐾) = (𝑥 ∈ ∪ 𝐽 ↦ {𝑓 ∈ (∪ 𝐾 ↑𝑚
∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝐽 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))})) |
| 22 | 2, 3, 7, 21 | syl3anc 1249 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐽 CnP 𝐾) = (𝑥 ∈ ∪ 𝐽 ↦ {𝑓 ∈ (∪ 𝐾 ↑𝑚
∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝐽 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))})) |
| 23 | 22 | dmeqd 4878 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → dom (𝐽 CnP 𝐾) = dom (𝑥 ∈ ∪ 𝐽 ↦ {𝑓 ∈ (∪ 𝐾 ↑𝑚
∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝐽 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))})) |
| 24 | | eqid 2204 |
. . . . 5
⊢ (𝑥 ∈ ∪ 𝐽
↦ {𝑓 ∈ (∪ 𝐾
↑𝑚 ∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝐽 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))}) = (𝑥 ∈ ∪ 𝐽 ↦ {𝑓 ∈ (∪ 𝐾 ↑𝑚
∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝐽 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))}) |
| 25 | 24 | dmmptss 5176 |
. . . 4
⊢ dom
(𝑥 ∈ ∪ 𝐽
↦ {𝑓 ∈ (∪ 𝐾
↑𝑚 ∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝐽 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))}) ⊆ ∪
𝐽 |
| 26 | 23, 25 | eqsstrdi 3244 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → dom (𝐽 CnP 𝐾) ⊆ ∪ 𝐽) |
| 27 | | toponuni 14405 |
. . . 4
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
| 28 | 27 | 3ad2ant1 1020 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑋 = ∪ 𝐽) |
| 29 | 26, 28 | sseqtrrd 3231 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → dom (𝐽 CnP 𝐾) ⊆ 𝑋) |
| 30 | | mptrel 4804 |
. . . 4
⊢ Rel
(𝑥 ∈ ∪ 𝐽
↦ {𝑓 ∈ (∪ 𝐾
↑𝑚 ∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝐽 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))}) |
| 31 | 22 | releqd 4757 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (Rel (𝐽 CnP 𝐾) ↔ Rel (𝑥 ∈ ∪ 𝐽 ↦ {𝑓 ∈ (∪ 𝐾 ↑𝑚
∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝐽 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))}))) |
| 32 | 30, 31 | mpbiri 168 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → Rel (𝐽 CnP 𝐾)) |
| 33 | | simp3 1001 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) |
| 34 | | relelfvdm 5602 |
. . 3
⊢ ((Rel
(𝐽 CnP 𝐾) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 ∈ dom (𝐽 CnP 𝐾)) |
| 35 | 32, 33, 34 | syl2anc 411 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 ∈ dom (𝐽 CnP 𝐾)) |
| 36 | 29, 35 | sseldd 3193 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 ∈ 𝑋) |