ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnprcl2k GIF version

Theorem cnprcl2k 13000
Description: Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.)
Assertion
Ref Expression
cnprcl2k ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃𝑋)

Proof of Theorem cnprcl2k
Dummy variables 𝑥 𝑓 𝑔 𝑗 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 12806 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
213ad2ant1 1013 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐽 ∈ Top)
3 simp2 993 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐾 ∈ Top)
4 uniexg 4424 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ V)
543ad2ant1 1013 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐽 ∈ V)
6 mptexg 5721 . . . . . . 7 ( 𝐽 ∈ V → (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) ∈ V)
75, 6syl 14 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) ∈ V)
8 unieq 3805 . . . . . . . 8 (𝑗 = 𝐽 𝑗 = 𝐽)
98oveq2d 5869 . . . . . . . . 9 (𝑗 = 𝐽 → ( 𝑘𝑚 𝑗) = ( 𝑘𝑚 𝐽))
10 rexeq 2666 . . . . . . . . . . 11 (𝑗 = 𝐽 → (∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦) ↔ ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦)))
1110imbi2d 229 . . . . . . . . . 10 (𝑗 = 𝐽 → (((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦)) ↔ ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))))
1211ralbidv 2470 . . . . . . . . 9 (𝑗 = 𝐽 → (∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦)) ↔ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))))
139, 12rabeqbidv 2725 . . . . . . . 8 (𝑗 = 𝐽 → {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))} = {𝑓 ∈ ( 𝑘𝑚 𝐽) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))})
148, 13mpteq12dv 4071 . . . . . . 7 (𝑗 = 𝐽 → (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) = (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝑘𝑚 𝐽) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
15 unieq 3805 . . . . . . . . . 10 (𝑘 = 𝐾 𝑘 = 𝐾)
1615oveq1d 5868 . . . . . . . . 9 (𝑘 = 𝐾 → ( 𝑘𝑚 𝐽) = ( 𝐾𝑚 𝐽))
17 raleq 2665 . . . . . . . . 9 (𝑘 = 𝐾 → (∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦)) ↔ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))))
1816, 17rabeqbidv 2725 . . . . . . . 8 (𝑘 = 𝐾 → {𝑓 ∈ ( 𝑘𝑚 𝐽) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))} = {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))})
1918mpteq2dv 4080 . . . . . . 7 (𝑘 = 𝐾 → (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝑘𝑚 𝐽) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) = (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
20 df-cnp 12983 . . . . . . 7 CnP = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
2114, 19, 20ovmpog 5987 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) ∈ V) → (𝐽 CnP 𝐾) = (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
222, 3, 7, 21syl3anc 1233 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐽 CnP 𝐾) = (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
2322dmeqd 4813 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → dom (𝐽 CnP 𝐾) = dom (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
24 eqid 2170 . . . . 5 (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) = (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))})
2524dmmptss 5107 . . . 4 dom (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) ⊆ 𝐽
2623, 25eqsstrdi 3199 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → dom (𝐽 CnP 𝐾) ⊆ 𝐽)
27 toponuni 12807 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
28273ad2ant1 1013 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑋 = 𝐽)
2926, 28sseqtrrd 3186 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → dom (𝐽 CnP 𝐾) ⊆ 𝑋)
30 mptrel 4739 . . . 4 Rel (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))})
3122releqd 4695 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (Rel (𝐽 CnP 𝐾) ↔ Rel (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))})))
3230, 31mpbiri 167 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → Rel (𝐽 CnP 𝐾))
33 simp3 994 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
34 relelfvdm 5528 . . 3 ((Rel (𝐽 CnP 𝐾) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 ∈ dom (𝐽 CnP 𝐾))
3532, 33, 34syl2anc 409 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 ∈ dom (𝐽 CnP 𝐾))
3629, 35sseldd 3148 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973   = wceq 1348  wcel 2141  wral 2448  wrex 2449  {crab 2452  Vcvv 2730  wss 3121   cuni 3796  cmpt 4050  dom cdm 4611  cima 4614  Rel wrel 4616  cfv 5198  (class class class)co 5853  𝑚 cmap 6626  Topctop 12789  TopOnctopon 12802   CnP ccnp 12980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-topon 12803  df-cnp 12983
This theorem is referenced by:  cnpf2  13001  cnptopco  13016  cncnp  13024  cnptoprest2  13034  metcnpi  13309  metcnpi2  13310  metcnpi3  13311  limccnpcntop  13438  limccnp2lem  13439  limccnp2cntop  13440
  Copyright terms: Public domain W3C validator