ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnprcl2k GIF version

Theorem cnprcl2k 12846
Description: Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.)
Assertion
Ref Expression
cnprcl2k ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃𝑋)

Proof of Theorem cnprcl2k
Dummy variables 𝑥 𝑓 𝑔 𝑗 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 12652 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
213ad2ant1 1008 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐽 ∈ Top)
3 simp2 988 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐾 ∈ Top)
4 uniexg 4417 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ V)
543ad2ant1 1008 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐽 ∈ V)
6 mptexg 5710 . . . . . . 7 ( 𝐽 ∈ V → (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) ∈ V)
75, 6syl 14 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) ∈ V)
8 unieq 3798 . . . . . . . 8 (𝑗 = 𝐽 𝑗 = 𝐽)
98oveq2d 5858 . . . . . . . . 9 (𝑗 = 𝐽 → ( 𝑘𝑚 𝑗) = ( 𝑘𝑚 𝐽))
10 rexeq 2662 . . . . . . . . . . 11 (𝑗 = 𝐽 → (∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦) ↔ ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦)))
1110imbi2d 229 . . . . . . . . . 10 (𝑗 = 𝐽 → (((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦)) ↔ ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))))
1211ralbidv 2466 . . . . . . . . 9 (𝑗 = 𝐽 → (∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦)) ↔ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))))
139, 12rabeqbidv 2721 . . . . . . . 8 (𝑗 = 𝐽 → {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))} = {𝑓 ∈ ( 𝑘𝑚 𝐽) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))})
148, 13mpteq12dv 4064 . . . . . . 7 (𝑗 = 𝐽 → (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) = (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝑘𝑚 𝐽) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
15 unieq 3798 . . . . . . . . . 10 (𝑘 = 𝐾 𝑘 = 𝐾)
1615oveq1d 5857 . . . . . . . . 9 (𝑘 = 𝐾 → ( 𝑘𝑚 𝐽) = ( 𝐾𝑚 𝐽))
17 raleq 2661 . . . . . . . . 9 (𝑘 = 𝐾 → (∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦)) ↔ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))))
1816, 17rabeqbidv 2721 . . . . . . . 8 (𝑘 = 𝐾 → {𝑓 ∈ ( 𝑘𝑚 𝐽) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))} = {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))})
1918mpteq2dv 4073 . . . . . . 7 (𝑘 = 𝐾 → (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝑘𝑚 𝐽) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) = (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
20 df-cnp 12829 . . . . . . 7 CnP = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
2114, 19, 20ovmpog 5976 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) ∈ V) → (𝐽 CnP 𝐾) = (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
222, 3, 7, 21syl3anc 1228 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐽 CnP 𝐾) = (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
2322dmeqd 4806 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → dom (𝐽 CnP 𝐾) = dom (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
24 eqid 2165 . . . . 5 (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) = (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))})
2524dmmptss 5100 . . . 4 dom (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) ⊆ 𝐽
2623, 25eqsstrdi 3194 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → dom (𝐽 CnP 𝐾) ⊆ 𝐽)
27 toponuni 12653 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
28273ad2ant1 1008 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑋 = 𝐽)
2926, 28sseqtrrd 3181 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → dom (𝐽 CnP 𝐾) ⊆ 𝑋)
30 mptrel 4732 . . . 4 Rel (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))})
3122releqd 4688 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (Rel (𝐽 CnP 𝐾) ↔ Rel (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))})))
3230, 31mpbiri 167 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → Rel (𝐽 CnP 𝐾))
33 simp3 989 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
34 relelfvdm 5518 . . 3 ((Rel (𝐽 CnP 𝐾) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 ∈ dom (𝐽 CnP 𝐾))
3532, 33, 34syl2anc 409 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 ∈ dom (𝐽 CnP 𝐾))
3629, 35sseldd 3143 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968   = wceq 1343  wcel 2136  wral 2444  wrex 2445  {crab 2448  Vcvv 2726  wss 3116   cuni 3789  cmpt 4043  dom cdm 4604  cima 4607  Rel wrel 4609  cfv 5188  (class class class)co 5842  𝑚 cmap 6614  Topctop 12635  TopOnctopon 12648   CnP ccnp 12826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-topon 12649  df-cnp 12829
This theorem is referenced by:  cnpf2  12847  cnptopco  12862  cncnp  12870  cnptoprest2  12880  metcnpi  13155  metcnpi2  13156  metcnpi3  13157  limccnpcntop  13284  limccnp2lem  13285  limccnp2cntop  13286
  Copyright terms: Public domain W3C validator