ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnprcl2k GIF version

Theorem cnprcl2k 14442
Description: Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.)
Assertion
Ref Expression
cnprcl2k ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃𝑋)

Proof of Theorem cnprcl2k
Dummy variables 𝑥 𝑓 𝑔 𝑗 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 14250 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
213ad2ant1 1020 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐽 ∈ Top)
3 simp2 1000 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐾 ∈ Top)
4 uniexg 4474 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ V)
543ad2ant1 1020 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐽 ∈ V)
6 mptexg 5787 . . . . . . 7 ( 𝐽 ∈ V → (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) ∈ V)
75, 6syl 14 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) ∈ V)
8 unieq 3848 . . . . . . . 8 (𝑗 = 𝐽 𝑗 = 𝐽)
98oveq2d 5938 . . . . . . . . 9 (𝑗 = 𝐽 → ( 𝑘𝑚 𝑗) = ( 𝑘𝑚 𝐽))
10 rexeq 2694 . . . . . . . . . . 11 (𝑗 = 𝐽 → (∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦) ↔ ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦)))
1110imbi2d 230 . . . . . . . . . 10 (𝑗 = 𝐽 → (((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦)) ↔ ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))))
1211ralbidv 2497 . . . . . . . . 9 (𝑗 = 𝐽 → (∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦)) ↔ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))))
139, 12rabeqbidv 2758 . . . . . . . 8 (𝑗 = 𝐽 → {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))} = {𝑓 ∈ ( 𝑘𝑚 𝐽) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))})
148, 13mpteq12dv 4115 . . . . . . 7 (𝑗 = 𝐽 → (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) = (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝑘𝑚 𝐽) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
15 unieq 3848 . . . . . . . . . 10 (𝑘 = 𝐾 𝑘 = 𝐾)
1615oveq1d 5937 . . . . . . . . 9 (𝑘 = 𝐾 → ( 𝑘𝑚 𝐽) = ( 𝐾𝑚 𝐽))
17 raleq 2693 . . . . . . . . 9 (𝑘 = 𝐾 → (∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦)) ↔ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))))
1816, 17rabeqbidv 2758 . . . . . . . 8 (𝑘 = 𝐾 → {𝑓 ∈ ( 𝑘𝑚 𝐽) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))} = {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))})
1918mpteq2dv 4124 . . . . . . 7 (𝑘 = 𝐾 → (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝑘𝑚 𝐽) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) = (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
20 df-cnp 14425 . . . . . . 7 CnP = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
2114, 19, 20ovmpog 6057 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) ∈ V) → (𝐽 CnP 𝐾) = (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
222, 3, 7, 21syl3anc 1249 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐽 CnP 𝐾) = (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
2322dmeqd 4868 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → dom (𝐽 CnP 𝐾) = dom (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
24 eqid 2196 . . . . 5 (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) = (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))})
2524dmmptss 5166 . . . 4 dom (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) ⊆ 𝐽
2623, 25eqsstrdi 3235 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → dom (𝐽 CnP 𝐾) ⊆ 𝐽)
27 toponuni 14251 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
28273ad2ant1 1020 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑋 = 𝐽)
2926, 28sseqtrrd 3222 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → dom (𝐽 CnP 𝐾) ⊆ 𝑋)
30 mptrel 4794 . . . 4 Rel (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))})
3122releqd 4747 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (Rel (𝐽 CnP 𝐾) ↔ Rel (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))})))
3230, 31mpbiri 168 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → Rel (𝐽 CnP 𝐾))
33 simp3 1001 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
34 relelfvdm 5590 . . 3 ((Rel (𝐽 CnP 𝐾) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 ∈ dom (𝐽 CnP 𝐾))
3532, 33, 34syl2anc 411 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 ∈ dom (𝐽 CnP 𝐾))
3629, 35sseldd 3184 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  wral 2475  wrex 2476  {crab 2479  Vcvv 2763  wss 3157   cuni 3839  cmpt 4094  dom cdm 4663  cima 4666  Rel wrel 4668  cfv 5258  (class class class)co 5922  𝑚 cmap 6707  Topctop 14233  TopOnctopon 14246   CnP ccnp 14422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-topon 14247  df-cnp 14425
This theorem is referenced by:  cnpf2  14443  cnptopco  14458  cncnp  14466  cnptoprest2  14476  metcnpi  14751  metcnpi2  14752  metcnpi3  14753  limccnpcntop  14911  limccnp2lem  14912  limccnp2cntop  14913
  Copyright terms: Public domain W3C validator