ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnprcl2k GIF version

Theorem cnprcl2k 14596
Description: Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.)
Assertion
Ref Expression
cnprcl2k ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃𝑋)

Proof of Theorem cnprcl2k
Dummy variables 𝑥 𝑓 𝑔 𝑗 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 14404 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
213ad2ant1 1020 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐽 ∈ Top)
3 simp2 1000 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐾 ∈ Top)
4 uniexg 4484 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ V)
543ad2ant1 1020 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐽 ∈ V)
6 mptexg 5799 . . . . . . 7 ( 𝐽 ∈ V → (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) ∈ V)
75, 6syl 14 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) ∈ V)
8 unieq 3858 . . . . . . . 8 (𝑗 = 𝐽 𝑗 = 𝐽)
98oveq2d 5950 . . . . . . . . 9 (𝑗 = 𝐽 → ( 𝑘𝑚 𝑗) = ( 𝑘𝑚 𝐽))
10 rexeq 2702 . . . . . . . . . . 11 (𝑗 = 𝐽 → (∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦) ↔ ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦)))
1110imbi2d 230 . . . . . . . . . 10 (𝑗 = 𝐽 → (((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦)) ↔ ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))))
1211ralbidv 2505 . . . . . . . . 9 (𝑗 = 𝐽 → (∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦)) ↔ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))))
139, 12rabeqbidv 2766 . . . . . . . 8 (𝑗 = 𝐽 → {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))} = {𝑓 ∈ ( 𝑘𝑚 𝐽) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))})
148, 13mpteq12dv 4125 . . . . . . 7 (𝑗 = 𝐽 → (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) = (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝑘𝑚 𝐽) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
15 unieq 3858 . . . . . . . . . 10 (𝑘 = 𝐾 𝑘 = 𝐾)
1615oveq1d 5949 . . . . . . . . 9 (𝑘 = 𝐾 → ( 𝑘𝑚 𝐽) = ( 𝐾𝑚 𝐽))
17 raleq 2701 . . . . . . . . 9 (𝑘 = 𝐾 → (∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦)) ↔ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))))
1816, 17rabeqbidv 2766 . . . . . . . 8 (𝑘 = 𝐾 → {𝑓 ∈ ( 𝑘𝑚 𝐽) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))} = {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))})
1918mpteq2dv 4134 . . . . . . 7 (𝑘 = 𝐾 → (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝑘𝑚 𝐽) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) = (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
20 df-cnp 14579 . . . . . . 7 CnP = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
2114, 19, 20ovmpog 6070 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) ∈ V) → (𝐽 CnP 𝐾) = (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
222, 3, 7, 21syl3anc 1249 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐽 CnP 𝐾) = (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
2322dmeqd 4878 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → dom (𝐽 CnP 𝐾) = dom (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
24 eqid 2204 . . . . 5 (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) = (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))})
2524dmmptss 5176 . . . 4 dom (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}) ⊆ 𝐽
2623, 25eqsstrdi 3244 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → dom (𝐽 CnP 𝐾) ⊆ 𝐽)
27 toponuni 14405 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
28273ad2ant1 1020 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑋 = 𝐽)
2926, 28sseqtrrd 3231 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → dom (𝐽 CnP 𝐾) ⊆ 𝑋)
30 mptrel 4804 . . . 4 Rel (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))})
3122releqd 4757 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (Rel (𝐽 CnP 𝐾) ↔ Rel (𝑥 𝐽 ↦ {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝐽 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))})))
3230, 31mpbiri 168 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → Rel (𝐽 CnP 𝐾))
33 simp3 1001 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
34 relelfvdm 5602 . . 3 ((Rel (𝐽 CnP 𝐾) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 ∈ dom (𝐽 CnP 𝐾))
3532, 33, 34syl2anc 411 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 ∈ dom (𝐽 CnP 𝐾))
3629, 35sseldd 3193 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1372  wcel 2175  wral 2483  wrex 2484  {crab 2487  Vcvv 2771  wss 3165   cuni 3849  cmpt 4104  dom cdm 4673  cima 4676  Rel wrel 4678  cfv 5268  (class class class)co 5934  𝑚 cmap 6725  Topctop 14387  TopOnctopon 14400   CnP ccnp 14576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-topon 14401  df-cnp 14579
This theorem is referenced by:  cnpf2  14597  cnptopco  14612  cncnp  14620  cnptoprest2  14630  metcnpi  14905  metcnpi2  14906  metcnpi3  14907  limccnpcntop  15065  limccnp2lem  15066  limccnp2cntop  15067
  Copyright terms: Public domain W3C validator