| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-cnp 14425 | 
. . 3
⊢  CnP =
(𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 ∈ ∪ 𝑗
↦ {𝑓 ∈ (∪ 𝑘
↑𝑚 ∪ 𝑗) ∣ ∀𝑤 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝑗 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))})) | 
| 2 | 1 | a1i 9 | 
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → CnP = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 ∈ ∪ 𝑗 ↦ {𝑓 ∈ (∪ 𝑘 ↑𝑚
∪ 𝑗) ∣ ∀𝑤 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝑗 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))}))) | 
| 3 |   | simprl 529 | 
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → 𝑗 = 𝐽) | 
| 4 | 3 | unieqd 3850 | 
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → ∪ 𝑗 = ∪
𝐽) | 
| 5 |   | toponuni 14251 | 
. . . . 5
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | 
| 6 | 5 | ad2antrr 488 | 
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → 𝑋 = ∪ 𝐽) | 
| 7 | 4, 6 | eqtr4d 2232 | 
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → ∪ 𝑗 = 𝑋) | 
| 8 |   | simprr 531 | 
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → 𝑘 = 𝐾) | 
| 9 | 8 | unieqd 3850 | 
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → ∪ 𝑘 = ∪
𝐾) | 
| 10 |   | toponuni 14251 | 
. . . . . . 7
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐾) | 
| 11 | 10 | ad2antlr 489 | 
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → 𝑌 = ∪ 𝐾) | 
| 12 | 9, 11 | eqtr4d 2232 | 
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → ∪ 𝑘 = 𝑌) | 
| 13 | 12, 7 | oveq12d 5940 | 
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → (∪
𝑘
↑𝑚 ∪ 𝑗) = (𝑌 ↑𝑚 𝑋)) | 
| 14 | 3 | rexeqdv 2700 | 
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → (∃𝑣 ∈ 𝑗 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤) ↔ ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))) | 
| 15 | 14 | imbi2d 230 | 
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → (((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝑗 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤)) ↔ ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤)))) | 
| 16 | 8, 15 | raleqbidv 2709 | 
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → (∀𝑤 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝑗 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤)) ↔ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤)))) | 
| 17 | 13, 16 | rabeqbidv 2758 | 
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → {𝑓 ∈ (∪ 𝑘 ↑𝑚
∪ 𝑗) ∣ ∀𝑤 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝑗 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))} = {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))}) | 
| 18 | 7, 17 | mpteq12dv 4115 | 
. 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → (𝑥 ∈ ∪ 𝑗 ↦ {𝑓 ∈ (∪ 𝑘 ↑𝑚
∪ 𝑗) ∣ ∀𝑤 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝑗 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))}) = (𝑥 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))})) | 
| 19 |   | topontop 14250 | 
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | 
| 20 | 19 | adantr 276 | 
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝐽 ∈ Top) | 
| 21 |   | topontop 14250 | 
. . 3
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) | 
| 22 | 21 | adantl 277 | 
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝐾 ∈ Top) | 
| 23 |   | fnmap 6714 | 
. . . . . . . 8
⊢ 
↑𝑚 Fn (V × V) | 
| 24 | 23 | a1i 9 | 
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ↑𝑚 Fn (V
× V)) | 
| 25 |   | toponmax 14261 | 
. . . . . . . . 9
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 ∈ 𝐾) | 
| 26 | 25 | elexd 2776 | 
. . . . . . . 8
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 ∈ V) | 
| 27 | 26 | adantl 277 | 
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝑌 ∈ V) | 
| 28 |   | toponmax 14261 | 
. . . . . . . . 9
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | 
| 29 | 28 | elexd 2776 | 
. . . . . . . 8
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ V) | 
| 30 | 29 | adantr 276 | 
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝑋 ∈ V) | 
| 31 |   | fnovex 5955 | 
. . . . . . 7
⊢ ((
↑𝑚 Fn (V × V) ∧ 𝑌 ∈ V ∧ 𝑋 ∈ V) → (𝑌 ↑𝑚 𝑋) ∈ V) | 
| 32 | 24, 27, 30, 31 | syl3anc 1249 | 
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑌 ↑𝑚 𝑋) ∈ V) | 
| 33 | 32 | adantr 276 | 
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝑋) → (𝑌 ↑𝑚 𝑋) ∈ V) | 
| 34 |   | ssrab2 3268 | 
. . . . . 6
⊢ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))} ⊆ (𝑌 ↑𝑚 𝑋) | 
| 35 |   | elpw2g 4189 | 
. . . . . 6
⊢ ((𝑌 ↑𝑚
𝑋) ∈ V → ({𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))} ∈ 𝒫 (𝑌 ↑𝑚 𝑋) ↔ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))} ⊆ (𝑌 ↑𝑚 𝑋))) | 
| 36 | 34, 35 | mpbiri 168 | 
. . . . 5
⊢ ((𝑌 ↑𝑚
𝑋) ∈ V → {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))} ∈ 𝒫 (𝑌 ↑𝑚 𝑋)) | 
| 37 | 33, 36 | syl 14 | 
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝑋) → {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))} ∈ 𝒫 (𝑌 ↑𝑚 𝑋)) | 
| 38 | 37 | fmpttd 5717 | 
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))}):𝑋⟶𝒫 (𝑌 ↑𝑚 𝑋)) | 
| 39 | 28 | adantr 276 | 
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝑋 ∈ 𝐽) | 
| 40 | 32 | pwexd 4214 | 
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝒫 (𝑌 ↑𝑚 𝑋) ∈ V) | 
| 41 |   | fex2 5426 | 
. . 3
⊢ (((𝑥 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))}):𝑋⟶𝒫 (𝑌 ↑𝑚 𝑋) ∧ 𝑋 ∈ 𝐽 ∧ 𝒫 (𝑌 ↑𝑚 𝑋) ∈ V) → (𝑥 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))}) ∈ V) | 
| 42 | 38, 39, 40, 41 | syl3anc 1249 | 
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))}) ∈ V) | 
| 43 | 2, 18, 20, 22, 42 | ovmpod 6050 | 
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 CnP 𝐾) = (𝑥 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))})) |