ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnpfval GIF version

Theorem cnpfval 14431
Description: The function mapping the points in a topology 𝐽 to the set of all functions from 𝐽 to topology 𝐾 continuous at that point. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnpfval ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 CnP 𝐾) = (𝑥𝑋 ↦ {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}))
Distinct variable groups:   𝑤,𝑓,𝑥,𝐾   𝑓,𝑋,𝑤,𝑥   𝑓,𝑌,𝑤,𝑥   𝑣,𝑓,𝐽,𝑤,𝑥
Allowed substitution hints:   𝐾(𝑣)   𝑋(𝑣)   𝑌(𝑣)

Proof of Theorem cnpfval
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cnp 14425 . . 3 CnP = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑤𝑘 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝑗 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}))
21a1i 9 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → CnP = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑤𝑘 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝑗 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))})))
3 simprl 529 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑗 = 𝐽)
43unieqd 3850 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑗 = 𝐽)
5 toponuni 14251 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
65ad2antrr 488 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑋 = 𝐽)
74, 6eqtr4d 2232 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑗 = 𝑋)
8 simprr 531 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑘 = 𝐾)
98unieqd 3850 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑘 = 𝐾)
10 toponuni 14251 . . . . . . 7 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
1110ad2antlr 489 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑌 = 𝐾)
129, 11eqtr4d 2232 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑘 = 𝑌)
1312, 7oveq12d 5940 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → ( 𝑘𝑚 𝑗) = (𝑌𝑚 𝑋))
143rexeqdv 2700 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → (∃𝑣𝑗 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤) ↔ ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤)))
1514imbi2d 230 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → (((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝑗 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤)) ↔ ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))))
168, 15raleqbidv 2709 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → (∀𝑤𝑘 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝑗 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤)) ↔ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))))
1713, 16rabeqbidv 2758 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑤𝑘 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝑗 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))} = {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))})
187, 17mpteq12dv 4115 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘𝑚 𝑗) ∣ ∀𝑤𝑘 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝑗 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}) = (𝑥𝑋 ↦ {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}))
19 topontop 14250 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2019adantr 276 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝐽 ∈ Top)
21 topontop 14250 . . 3 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
2221adantl 277 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝐾 ∈ Top)
23 fnmap 6714 . . . . . . . 8 𝑚 Fn (V × V)
2423a1i 9 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ↑𝑚 Fn (V × V))
25 toponmax 14261 . . . . . . . . 9 (𝐾 ∈ (TopOn‘𝑌) → 𝑌𝐾)
2625elexd 2776 . . . . . . . 8 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 ∈ V)
2726adantl 277 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝑌 ∈ V)
28 toponmax 14261 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
2928elexd 2776 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ V)
3029adantr 276 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝑋 ∈ V)
31 fnovex 5955 . . . . . . 7 (( ↑𝑚 Fn (V × V) ∧ 𝑌 ∈ V ∧ 𝑋 ∈ V) → (𝑌𝑚 𝑋) ∈ V)
3224, 27, 30, 31syl3anc 1249 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑌𝑚 𝑋) ∈ V)
3332adantr 276 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥𝑋) → (𝑌𝑚 𝑋) ∈ V)
34 ssrab2 3268 . . . . . 6 {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))} ⊆ (𝑌𝑚 𝑋)
35 elpw2g 4189 . . . . . 6 ((𝑌𝑚 𝑋) ∈ V → ({𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))} ∈ 𝒫 (𝑌𝑚 𝑋) ↔ {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))} ⊆ (𝑌𝑚 𝑋)))
3634, 35mpbiri 168 . . . . 5 ((𝑌𝑚 𝑋) ∈ V → {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))} ∈ 𝒫 (𝑌𝑚 𝑋))
3733, 36syl 14 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥𝑋) → {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))} ∈ 𝒫 (𝑌𝑚 𝑋))
3837fmpttd 5717 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋 ↦ {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}):𝑋⟶𝒫 (𝑌𝑚 𝑋))
3928adantr 276 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝑋𝐽)
4032pwexd 4214 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝒫 (𝑌𝑚 𝑋) ∈ V)
41 fex2 5426 . . 3 (((𝑥𝑋 ↦ {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}):𝑋⟶𝒫 (𝑌𝑚 𝑋) ∧ 𝑋𝐽 ∧ 𝒫 (𝑌𝑚 𝑋) ∈ V) → (𝑥𝑋 ↦ {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}) ∈ V)
4238, 39, 40, 41syl3anc 1249 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋 ↦ {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}) ∈ V)
432, 18, 20, 22, 42ovmpod 6050 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 CnP 𝐾) = (𝑥𝑋 ↦ {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  wrex 2476  {crab 2479  Vcvv 2763  wss 3157  𝒫 cpw 3605   cuni 3839  cmpt 4094   × cxp 4661  cima 4666   Fn wfn 5253  wf 5254  cfv 5258  (class class class)co 5922  cmpo 5924  𝑚 cmap 6707  Topctop 14233  TopOnctopon 14246   CnP ccnp 14422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-top 14234  df-topon 14247  df-cnp 14425
This theorem is referenced by:  cnpval  14434
  Copyright terms: Public domain W3C validator