Step | Hyp | Ref
| Expression |
1 | | df-cnp 12829 |
. . 3
⊢ CnP =
(𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 ∈ ∪ 𝑗
↦ {𝑓 ∈ (∪ 𝑘
↑𝑚 ∪ 𝑗) ∣ ∀𝑤 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝑗 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))})) |
2 | 1 | a1i 9 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → CnP = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 ∈ ∪ 𝑗 ↦ {𝑓 ∈ (∪ 𝑘 ↑𝑚
∪ 𝑗) ∣ ∀𝑤 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝑗 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))}))) |
3 | | simprl 521 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → 𝑗 = 𝐽) |
4 | 3 | unieqd 3800 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → ∪ 𝑗 = ∪
𝐽) |
5 | | toponuni 12653 |
. . . . 5
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
6 | 5 | ad2antrr 480 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → 𝑋 = ∪ 𝐽) |
7 | 4, 6 | eqtr4d 2201 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → ∪ 𝑗 = 𝑋) |
8 | | simprr 522 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → 𝑘 = 𝐾) |
9 | 8 | unieqd 3800 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → ∪ 𝑘 = ∪
𝐾) |
10 | | toponuni 12653 |
. . . . . . 7
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐾) |
11 | 10 | ad2antlr 481 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → 𝑌 = ∪ 𝐾) |
12 | 9, 11 | eqtr4d 2201 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → ∪ 𝑘 = 𝑌) |
13 | 12, 7 | oveq12d 5860 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → (∪
𝑘
↑𝑚 ∪ 𝑗) = (𝑌 ↑𝑚 𝑋)) |
14 | 3 | rexeqdv 2668 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → (∃𝑣 ∈ 𝑗 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤) ↔ ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))) |
15 | 14 | imbi2d 229 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → (((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝑗 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤)) ↔ ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤)))) |
16 | 8, 15 | raleqbidv 2673 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → (∀𝑤 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝑗 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤)) ↔ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤)))) |
17 | 13, 16 | rabeqbidv 2721 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → {𝑓 ∈ (∪ 𝑘 ↑𝑚
∪ 𝑗) ∣ ∀𝑤 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝑗 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))} = {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))}) |
18 | 7, 17 | mpteq12dv 4064 |
. 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → (𝑥 ∈ ∪ 𝑗 ↦ {𝑓 ∈ (∪ 𝑘 ↑𝑚
∪ 𝑗) ∣ ∀𝑤 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝑗 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))}) = (𝑥 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))})) |
19 | | topontop 12652 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
20 | 19 | adantr 274 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝐽 ∈ Top) |
21 | | topontop 12652 |
. . 3
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) |
22 | 21 | adantl 275 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝐾 ∈ Top) |
23 | | fnmap 6621 |
. . . . . . . 8
⊢
↑𝑚 Fn (V × V) |
24 | 23 | a1i 9 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ↑𝑚 Fn (V
× V)) |
25 | | toponmax 12663 |
. . . . . . . . 9
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 ∈ 𝐾) |
26 | 25 | elexd 2739 |
. . . . . . . 8
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 ∈ V) |
27 | 26 | adantl 275 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝑌 ∈ V) |
28 | | toponmax 12663 |
. . . . . . . . 9
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) |
29 | 28 | elexd 2739 |
. . . . . . . 8
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ V) |
30 | 29 | adantr 274 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝑋 ∈ V) |
31 | | fnovex 5875 |
. . . . . . 7
⊢ ((
↑𝑚 Fn (V × V) ∧ 𝑌 ∈ V ∧ 𝑋 ∈ V) → (𝑌 ↑𝑚 𝑋) ∈ V) |
32 | 24, 27, 30, 31 | syl3anc 1228 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑌 ↑𝑚 𝑋) ∈ V) |
33 | 32 | adantr 274 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝑋) → (𝑌 ↑𝑚 𝑋) ∈ V) |
34 | | ssrab2 3227 |
. . . . . 6
⊢ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))} ⊆ (𝑌 ↑𝑚 𝑋) |
35 | | elpw2g 4135 |
. . . . . 6
⊢ ((𝑌 ↑𝑚
𝑋) ∈ V → ({𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))} ∈ 𝒫 (𝑌 ↑𝑚 𝑋) ↔ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))} ⊆ (𝑌 ↑𝑚 𝑋))) |
36 | 34, 35 | mpbiri 167 |
. . . . 5
⊢ ((𝑌 ↑𝑚
𝑋) ∈ V → {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))} ∈ 𝒫 (𝑌 ↑𝑚 𝑋)) |
37 | 33, 36 | syl 14 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝑋) → {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))} ∈ 𝒫 (𝑌 ↑𝑚 𝑋)) |
38 | 37 | fmpttd 5640 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))}):𝑋⟶𝒫 (𝑌 ↑𝑚 𝑋)) |
39 | 28 | adantr 274 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝑋 ∈ 𝐽) |
40 | 32 | pwexd 4160 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝒫 (𝑌 ↑𝑚 𝑋) ∈ V) |
41 | | fex2 5356 |
. . 3
⊢ (((𝑥 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))}):𝑋⟶𝒫 (𝑌 ↑𝑚 𝑋) ∧ 𝑋 ∈ 𝐽 ∧ 𝒫 (𝑌 ↑𝑚 𝑋) ∈ V) → (𝑥 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))}) ∈ V) |
42 | 38, 39, 40, 41 | syl3anc 1228 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))}) ∈ V) |
43 | 2, 18, 20, 22, 42 | ovmpod 5969 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 CnP 𝐾) = (𝑥 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))})) |