ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-lm GIF version

Definition df-lm 14510
Description: Define a function on topologies whose value is the convergence relation for sequences into the given topological space. Although 𝑓 is typically a sequence (a function from an upperset of integers) with values in the topological space, it need not be. Note, however, that the limit property concerns only values at integers, so that the real-valued function (𝑥 ∈ ℝ ↦ (sin‘(π · 𝑥))) converges to zero (in the standard topology on the reals) with this definition. (Contributed by NM, 7-Sep-2006.)
Assertion
Ref Expression
df-lm 𝑡 = (𝑗 ∈ Top ↦ {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ ( 𝑗pm ℂ) ∧ 𝑥 𝑗 ∧ ∀𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
Distinct variable group:   𝑓,𝑗,𝑥,𝑦,𝑢

Detailed syntax breakdown of Definition df-lm
StepHypRef Expression
1 clm 14507 . 2 class 𝑡
2 vj . . 3 setvar 𝑗
3 ctop 14317 . . 3 class Top
4 vf . . . . . . 7 setvar 𝑓
54cv 1363 . . . . . 6 class 𝑓
62cv 1363 . . . . . . . 8 class 𝑗
76cuni 3840 . . . . . . 7 class 𝑗
8 cc 7894 . . . . . . 7 class
9 cpm 6717 . . . . . . 7 class pm
107, 8, 9co 5925 . . . . . 6 class ( 𝑗pm ℂ)
115, 10wcel 2167 . . . . 5 wff 𝑓 ∈ ( 𝑗pm ℂ)
12 vx . . . . . . 7 setvar 𝑥
1312cv 1363 . . . . . 6 class 𝑥
1413, 7wcel 2167 . . . . 5 wff 𝑥 𝑗
15 vu . . . . . . . 8 setvar 𝑢
1612, 15wel 2168 . . . . . . 7 wff 𝑥𝑢
17 vy . . . . . . . . . 10 setvar 𝑦
1817cv 1363 . . . . . . . . 9 class 𝑦
1915cv 1363 . . . . . . . . 9 class 𝑢
205, 18cres 4666 . . . . . . . . 9 class (𝑓𝑦)
2118, 19, 20wf 5255 . . . . . . . 8 wff (𝑓𝑦):𝑦𝑢
22 cuz 9618 . . . . . . . . 9 class
2322crn 4665 . . . . . . . 8 class ran ℤ
2421, 17, 23wrex 2476 . . . . . . 7 wff 𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢
2516, 24wi 4 . . . . . 6 wff (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢)
2625, 15, 6wral 2475 . . . . 5 wff 𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢)
2711, 14, 26w3a 980 . . . 4 wff (𝑓 ∈ ( 𝑗pm ℂ) ∧ 𝑥 𝑗 ∧ ∀𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))
2827, 4, 12copab 4094 . . 3 class {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ ( 𝑗pm ℂ) ∧ 𝑥 𝑗 ∧ ∀𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))}
292, 3, 28cmpt 4095 . 2 class (𝑗 ∈ Top ↦ {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ ( 𝑗pm ℂ) ∧ 𝑥 𝑗 ∧ ∀𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
301, 29wceq 1364 1 wff 𝑡 = (𝑗 ∈ Top ↦ {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ ( 𝑗pm ℂ) ∧ 𝑥 𝑗 ∧ ∀𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
Colors of variables: wff set class
This definition is referenced by:  lmrcl  14511  lmfval  14512
  Copyright terms: Public domain W3C validator