Detailed syntax breakdown of Definition df-lm
| Step | Hyp | Ref
 | Expression | 
| 1 |   | clm 14423 | 
. 2
class
⇝𝑡 | 
| 2 |   | vj | 
. . 3
setvar 𝑗 | 
| 3 |   | ctop 14233 | 
. . 3
class
Top | 
| 4 |   | vf | 
. . . . . . 7
setvar 𝑓 | 
| 5 | 4 | cv 1363 | 
. . . . . 6
class 𝑓 | 
| 6 | 2 | cv 1363 | 
. . . . . . . 8
class 𝑗 | 
| 7 | 6 | cuni 3839 | 
. . . . . . 7
class ∪ 𝑗 | 
| 8 |   | cc 7877 | 
. . . . . . 7
class
ℂ | 
| 9 |   | cpm 6708 | 
. . . . . . 7
class 
↑pm | 
| 10 | 7, 8, 9 | co 5922 | 
. . . . . 6
class (∪ 𝑗
↑pm ℂ) | 
| 11 | 5, 10 | wcel 2167 | 
. . . . 5
wff 𝑓 ∈ (∪ 𝑗
↑pm ℂ) | 
| 12 |   | vx | 
. . . . . . 7
setvar 𝑥 | 
| 13 | 12 | cv 1363 | 
. . . . . 6
class 𝑥 | 
| 14 | 13, 7 | wcel 2167 | 
. . . . 5
wff 𝑥 ∈ ∪ 𝑗 | 
| 15 |   | vu | 
. . . . . . . 8
setvar 𝑢 | 
| 16 | 12, 15 | wel 2168 | 
. . . . . . 7
wff 𝑥 ∈ 𝑢 | 
| 17 |   | vy | 
. . . . . . . . . 10
setvar 𝑦 | 
| 18 | 17 | cv 1363 | 
. . . . . . . . 9
class 𝑦 | 
| 19 | 15 | cv 1363 | 
. . . . . . . . 9
class 𝑢 | 
| 20 | 5, 18 | cres 4665 | 
. . . . . . . . 9
class (𝑓 ↾ 𝑦) | 
| 21 | 18, 19, 20 | wf 5254 | 
. . . . . . . 8
wff (𝑓 ↾ 𝑦):𝑦⟶𝑢 | 
| 22 |   | cuz 9601 | 
. . . . . . . . 9
class
ℤ≥ | 
| 23 | 22 | crn 4664 | 
. . . . . . . 8
class ran
ℤ≥ | 
| 24 | 21, 17, 23 | wrex 2476 | 
. . . . . . 7
wff
∃𝑦 ∈ ran
ℤ≥(𝑓
↾ 𝑦):𝑦⟶𝑢 | 
| 25 | 16, 24 | wi 4 | 
. . . . . 6
wff (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢) | 
| 26 | 25, 15, 6 | wral 2475 | 
. . . . 5
wff
∀𝑢 ∈
𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢) | 
| 27 | 11, 14, 26 | w3a 980 | 
. . . 4
wff (𝑓 ∈ (∪ 𝑗
↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢)) | 
| 28 | 27, 4, 12 | copab 4093 | 
. . 3
class
{〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝑗
↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))} | 
| 29 | 2, 3, 28 | cmpt 4094 | 
. 2
class (𝑗 ∈ Top ↦ {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝑗 ↑pm
ℂ) ∧ 𝑥 ∈
∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) | 
| 30 | 1, 29 | wceq 1364 | 
1
wff
⇝𝑡 = (𝑗 ∈ Top ↦ {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝑗 ↑pm
ℂ) ∧ 𝑥 ∈
∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) |