Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > df-dcin | GIF version |
Description: Define decidability of a class in another. (Contributed by BJ, 19-Feb-2022.) |
Ref | Expression |
---|---|
df-dcin | ⊢ (𝐴 DECIDin 𝐵 ↔ ∀𝑥 ∈ 𝐵 DECID 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | wdcin 13828 | . 2 wff 𝐴 DECIDin 𝐵 |
4 | vx | . . . . . 6 setvar 𝑥 | |
5 | 4 | cv 1347 | . . . . 5 class 𝑥 |
6 | 5, 1 | wcel 2141 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 6 | wdc 829 | . . 3 wff DECID 𝑥 ∈ 𝐴 |
8 | 7, 4, 2 | wral 2448 | . 2 wff ∀𝑥 ∈ 𝐵 DECID 𝑥 ∈ 𝐴 |
9 | 3, 8 | wb 104 | 1 wff (𝐴 DECIDin 𝐵 ↔ ∀𝑥 ∈ 𝐵 DECID 𝑥 ∈ 𝐴) |
Colors of variables: wff set class |
This definition is referenced by: decidi 13830 decidr 13831 sumdc2 13834 |
Copyright terms: Public domain | W3C validator |