| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > df-dcin | GIF version | ||
| Description: Define decidability of a class in another. (Contributed by BJ, 19-Feb-2022.) |
| Ref | Expression |
|---|---|
| df-dcin | ⊢ (𝐴 DECIDin 𝐵 ↔ ∀𝑥 ∈ 𝐵 DECID 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | wdcin 15439 | . 2 wff 𝐴 DECIDin 𝐵 |
| 4 | vx | . . . . . 6 setvar 𝑥 | |
| 5 | 4 | cv 1363 | . . . . 5 class 𝑥 |
| 6 | 5, 1 | wcel 2167 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 6 | wdc 835 | . . 3 wff DECID 𝑥 ∈ 𝐴 |
| 8 | 7, 4, 2 | wral 2475 | . 2 wff ∀𝑥 ∈ 𝐵 DECID 𝑥 ∈ 𝐴 |
| 9 | 3, 8 | wb 105 | 1 wff (𝐴 DECIDin 𝐵 ↔ ∀𝑥 ∈ 𝐵 DECID 𝑥 ∈ 𝐴) |
| Colors of variables: wff set class |
| This definition is referenced by: decidi 15441 decidr 15442 sumdc2 15445 |
| Copyright terms: Public domain | W3C validator |