Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  df-dcin GIF version

Definition df-dcin 13675
Description: Define decidability of a class in another. (Contributed by BJ, 19-Feb-2022.)
Assertion
Ref Expression
df-dcin (𝐴 DECIDin 𝐵 ↔ ∀𝑥𝐵 DECID 𝑥𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Detailed syntax breakdown of Definition df-dcin
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2wdcin 13674 . 2 wff 𝐴 DECIDin 𝐵
4 vx . . . . . 6 setvar 𝑥
54cv 1342 . . . . 5 class 𝑥
65, 1wcel 2136 . . . 4 wff 𝑥𝐴
76wdc 824 . . 3 wff DECID 𝑥𝐴
87, 4, 2wral 2444 . 2 wff 𝑥𝐵 DECID 𝑥𝐴
93, 8wb 104 1 wff (𝐴 DECIDin 𝐵 ↔ ∀𝑥𝐵 DECID 𝑥𝐴)
Colors of variables: wff set class
This definition is referenced by:  decidi  13676  decidr  13677  sumdc2  13680
  Copyright terms: Public domain W3C validator