![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > sumdc2 | GIF version |
Description: Alternate proof of sumdc 11368, without disjoint variable condition on 𝑁, 𝑥 (longer because the statement is taylored to the proof sumdc 11368). (Contributed by BJ, 19-Feb-2022.) |
Ref | Expression |
---|---|
sumdc2.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
sumdc2.ss | ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) |
sumdc2.dc | ⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)DECID 𝑥 ∈ 𝐴) |
sumdc2.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
Ref | Expression |
---|---|
sumdc2 | ⊢ (𝜑 → DECID 𝑁 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumdc2.ss | . . 3 ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) | |
2 | sumdc2.dc | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)DECID 𝑥 ∈ 𝐴) | |
3 | eleq1 2240 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
4 | 3 | dcbid 838 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (DECID 𝑥 ∈ 𝐴 ↔ DECID 𝑦 ∈ 𝐴)) |
5 | 4 | rspccv 2840 | . . . . . 6 ⊢ (∀𝑥 ∈ (ℤ≥‘𝑀)DECID 𝑥 ∈ 𝐴 → (𝑦 ∈ (ℤ≥‘𝑀) → DECID 𝑦 ∈ 𝐴)) |
6 | exmiddc 836 | . . . . . 6 ⊢ (DECID 𝑦 ∈ 𝐴 → (𝑦 ∈ 𝐴 ∨ ¬ 𝑦 ∈ 𝐴)) | |
7 | 5, 6 | syl6 33 | . . . . 5 ⊢ (∀𝑥 ∈ (ℤ≥‘𝑀)DECID 𝑥 ∈ 𝐴 → (𝑦 ∈ (ℤ≥‘𝑀) → (𝑦 ∈ 𝐴 ∨ ¬ 𝑦 ∈ 𝐴))) |
8 | 2, 7 | syl 14 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ (ℤ≥‘𝑀) → (𝑦 ∈ 𝐴 ∨ ¬ 𝑦 ∈ 𝐴))) |
9 | 8 | decidr 14633 | . . 3 ⊢ (𝜑 → 𝐴 DECIDin (ℤ≥‘𝑀)) |
10 | sumdc2.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
11 | uzdcinzz 14635 | . . . 4 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) DECIDin ℤ) | |
12 | 10, 11 | syl 14 | . . 3 ⊢ (𝜑 → (ℤ≥‘𝑀) DECIDin ℤ) |
13 | 1, 9, 12 | decidin 14634 | . 2 ⊢ (𝜑 → 𝐴 DECIDin ℤ) |
14 | sumdc2.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
15 | df-dcin 14631 | . . 3 ⊢ (𝐴 DECIDin ℤ ↔ ∀𝑧 ∈ ℤ DECID 𝑧 ∈ 𝐴) | |
16 | nfv 1528 | . . . . . 6 ⊢ Ⅎ𝑧DECID 𝑁 ∈ 𝐴 | |
17 | 16 | rspct 2836 | . . . . 5 ⊢ (∀𝑧(𝑧 = 𝑁 → (DECID 𝑧 ∈ 𝐴 ↔ DECID 𝑁 ∈ 𝐴)) → (𝑁 ∈ ℤ → (∀𝑧 ∈ ℤ DECID 𝑧 ∈ 𝐴 → DECID 𝑁 ∈ 𝐴))) |
18 | eleq1 2240 | . . . . . 6 ⊢ (𝑧 = 𝑁 → (𝑧 ∈ 𝐴 ↔ 𝑁 ∈ 𝐴)) | |
19 | 18 | dcbid 838 | . . . . 5 ⊢ (𝑧 = 𝑁 → (DECID 𝑧 ∈ 𝐴 ↔ DECID 𝑁 ∈ 𝐴)) |
20 | 17, 19 | mpg 1451 | . . . 4 ⊢ (𝑁 ∈ ℤ → (∀𝑧 ∈ ℤ DECID 𝑧 ∈ 𝐴 → DECID 𝑁 ∈ 𝐴)) |
21 | 20 | com12 30 | . . 3 ⊢ (∀𝑧 ∈ ℤ DECID 𝑧 ∈ 𝐴 → (𝑁 ∈ ℤ → DECID 𝑁 ∈ 𝐴)) |
22 | 15, 21 | sylbi 121 | . 2 ⊢ (𝐴 DECIDin ℤ → (𝑁 ∈ ℤ → DECID 𝑁 ∈ 𝐴)) |
23 | 13, 14, 22 | sylc 62 | 1 ⊢ (𝜑 → DECID 𝑁 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 708 DECID wdc 834 = wceq 1353 ∈ wcel 2148 ∀wral 2455 ⊆ wss 3131 ‘cfv 5218 ℤcz 9255 ℤ≥cuz 9530 DECIDin wdcin 14630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-inn 8922 df-n0 9179 df-z 9256 df-uz 9531 df-dcin 14631 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |