Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  sumdc2 GIF version

Theorem sumdc2 13690
Description: Alternate proof of sumdc 11299, without disjoint variable condition on 𝑁, 𝑥 (longer because the statement is taylored to the proof sumdc 11299). (Contributed by BJ, 19-Feb-2022.)
Hypotheses
Ref Expression
sumdc2.m (𝜑𝑀 ∈ ℤ)
sumdc2.ss (𝜑𝐴 ⊆ (ℤ𝑀))
sumdc2.dc (𝜑 → ∀𝑥 ∈ (ℤ𝑀)DECID 𝑥𝐴)
sumdc2.n (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
sumdc2 (𝜑DECID 𝑁𝐴)
Distinct variable groups:   𝑥,𝑀   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑁(𝑥)

Proof of Theorem sumdc2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumdc2.ss . . 3 (𝜑𝐴 ⊆ (ℤ𝑀))
2 sumdc2.dc . . . . 5 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)DECID 𝑥𝐴)
3 eleq1 2229 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
43dcbid 828 . . . . . . 7 (𝑥 = 𝑦 → (DECID 𝑥𝐴DECID 𝑦𝐴))
54rspccv 2827 . . . . . 6 (∀𝑥 ∈ (ℤ𝑀)DECID 𝑥𝐴 → (𝑦 ∈ (ℤ𝑀) → DECID 𝑦𝐴))
6 exmiddc 826 . . . . . 6 (DECID 𝑦𝐴 → (𝑦𝐴 ∨ ¬ 𝑦𝐴))
75, 6syl6 33 . . . . 5 (∀𝑥 ∈ (ℤ𝑀)DECID 𝑥𝐴 → (𝑦 ∈ (ℤ𝑀) → (𝑦𝐴 ∨ ¬ 𝑦𝐴)))
82, 7syl 14 . . . 4 (𝜑 → (𝑦 ∈ (ℤ𝑀) → (𝑦𝐴 ∨ ¬ 𝑦𝐴)))
98decidr 13687 . . 3 (𝜑𝐴 DECIDin (ℤ𝑀))
10 sumdc2.m . . . 4 (𝜑𝑀 ∈ ℤ)
11 uzdcinzz 13689 . . . 4 (𝑀 ∈ ℤ → (ℤ𝑀) DECIDin ℤ)
1210, 11syl 14 . . 3 (𝜑 → (ℤ𝑀) DECIDin ℤ)
131, 9, 12decidin 13688 . 2 (𝜑𝐴 DECIDin ℤ)
14 sumdc2.n . 2 (𝜑𝑁 ∈ ℤ)
15 df-dcin 13685 . . 3 (𝐴 DECIDin ℤ ↔ ∀𝑧 ∈ ℤ DECID 𝑧𝐴)
16 nfv 1516 . . . . . 6 𝑧DECID 𝑁𝐴
1716rspct 2823 . . . . 5 (∀𝑧(𝑧 = 𝑁 → (DECID 𝑧𝐴DECID 𝑁𝐴)) → (𝑁 ∈ ℤ → (∀𝑧 ∈ ℤ DECID 𝑧𝐴DECID 𝑁𝐴)))
18 eleq1 2229 . . . . . 6 (𝑧 = 𝑁 → (𝑧𝐴𝑁𝐴))
1918dcbid 828 . . . . 5 (𝑧 = 𝑁 → (DECID 𝑧𝐴DECID 𝑁𝐴))
2017, 19mpg 1439 . . . 4 (𝑁 ∈ ℤ → (∀𝑧 ∈ ℤ DECID 𝑧𝐴DECID 𝑁𝐴))
2120com12 30 . . 3 (∀𝑧 ∈ ℤ DECID 𝑧𝐴 → (𝑁 ∈ ℤ → DECID 𝑁𝐴))
2215, 21sylbi 120 . 2 (𝐴 DECIDin ℤ → (𝑁 ∈ ℤ → DECID 𝑁𝐴))
2313, 14, 22sylc 62 1 (𝜑DECID 𝑁𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  wo 698  DECID wdc 824   = wceq 1343  wcel 2136  wral 2444  wss 3116  cfv 5188  cz 9191  cuz 9466   DECIDin wdcin 13684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-dcin 13685
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator