![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > sumdc2 | GIF version |
Description: Alternate proof of sumdc 11501, without disjoint variable condition on 𝑁, 𝑥 (longer because the statement is taylored to the proof sumdc 11501). (Contributed by BJ, 19-Feb-2022.) |
Ref | Expression |
---|---|
sumdc2.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
sumdc2.ss | ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) |
sumdc2.dc | ⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)DECID 𝑥 ∈ 𝐴) |
sumdc2.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
Ref | Expression |
---|---|
sumdc2 | ⊢ (𝜑 → DECID 𝑁 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumdc2.ss | . . 3 ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) | |
2 | sumdc2.dc | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)DECID 𝑥 ∈ 𝐴) | |
3 | eleq1 2256 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
4 | 3 | dcbid 839 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (DECID 𝑥 ∈ 𝐴 ↔ DECID 𝑦 ∈ 𝐴)) |
5 | 4 | rspccv 2861 | . . . . . 6 ⊢ (∀𝑥 ∈ (ℤ≥‘𝑀)DECID 𝑥 ∈ 𝐴 → (𝑦 ∈ (ℤ≥‘𝑀) → DECID 𝑦 ∈ 𝐴)) |
6 | exmiddc 837 | . . . . . 6 ⊢ (DECID 𝑦 ∈ 𝐴 → (𝑦 ∈ 𝐴 ∨ ¬ 𝑦 ∈ 𝐴)) | |
7 | 5, 6 | syl6 33 | . . . . 5 ⊢ (∀𝑥 ∈ (ℤ≥‘𝑀)DECID 𝑥 ∈ 𝐴 → (𝑦 ∈ (ℤ≥‘𝑀) → (𝑦 ∈ 𝐴 ∨ ¬ 𝑦 ∈ 𝐴))) |
8 | 2, 7 | syl 14 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ (ℤ≥‘𝑀) → (𝑦 ∈ 𝐴 ∨ ¬ 𝑦 ∈ 𝐴))) |
9 | 8 | decidr 15288 | . . 3 ⊢ (𝜑 → 𝐴 DECIDin (ℤ≥‘𝑀)) |
10 | sumdc2.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
11 | uzdcinzz 15290 | . . . 4 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) DECIDin ℤ) | |
12 | 10, 11 | syl 14 | . . 3 ⊢ (𝜑 → (ℤ≥‘𝑀) DECIDin ℤ) |
13 | 1, 9, 12 | decidin 15289 | . 2 ⊢ (𝜑 → 𝐴 DECIDin ℤ) |
14 | sumdc2.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
15 | df-dcin 15286 | . . 3 ⊢ (𝐴 DECIDin ℤ ↔ ∀𝑧 ∈ ℤ DECID 𝑧 ∈ 𝐴) | |
16 | nfv 1539 | . . . . . 6 ⊢ Ⅎ𝑧DECID 𝑁 ∈ 𝐴 | |
17 | 16 | rspct 2857 | . . . . 5 ⊢ (∀𝑧(𝑧 = 𝑁 → (DECID 𝑧 ∈ 𝐴 ↔ DECID 𝑁 ∈ 𝐴)) → (𝑁 ∈ ℤ → (∀𝑧 ∈ ℤ DECID 𝑧 ∈ 𝐴 → DECID 𝑁 ∈ 𝐴))) |
18 | eleq1 2256 | . . . . . 6 ⊢ (𝑧 = 𝑁 → (𝑧 ∈ 𝐴 ↔ 𝑁 ∈ 𝐴)) | |
19 | 18 | dcbid 839 | . . . . 5 ⊢ (𝑧 = 𝑁 → (DECID 𝑧 ∈ 𝐴 ↔ DECID 𝑁 ∈ 𝐴)) |
20 | 17, 19 | mpg 1462 | . . . 4 ⊢ (𝑁 ∈ ℤ → (∀𝑧 ∈ ℤ DECID 𝑧 ∈ 𝐴 → DECID 𝑁 ∈ 𝐴)) |
21 | 20 | com12 30 | . . 3 ⊢ (∀𝑧 ∈ ℤ DECID 𝑧 ∈ 𝐴 → (𝑁 ∈ ℤ → DECID 𝑁 ∈ 𝐴)) |
22 | 15, 21 | sylbi 121 | . 2 ⊢ (𝐴 DECIDin ℤ → (𝑁 ∈ ℤ → DECID 𝑁 ∈ 𝐴)) |
23 | 13, 14, 22 | sylc 62 | 1 ⊢ (𝜑 → DECID 𝑁 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 709 DECID wdc 835 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ⊆ wss 3153 ‘cfv 5254 ℤcz 9317 ℤ≥cuz 9592 DECIDin wdcin 15285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-n0 9241 df-z 9318 df-uz 9593 df-dcin 15286 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |