Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  sumdc2 GIF version

Theorem sumdc2 14904
Description: Alternate proof of sumdc 11380, without disjoint variable condition on 𝑁, 𝑥 (longer because the statement is taylored to the proof sumdc 11380). (Contributed by BJ, 19-Feb-2022.)
Hypotheses
Ref Expression
sumdc2.m (𝜑𝑀 ∈ ℤ)
sumdc2.ss (𝜑𝐴 ⊆ (ℤ𝑀))
sumdc2.dc (𝜑 → ∀𝑥 ∈ (ℤ𝑀)DECID 𝑥𝐴)
sumdc2.n (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
sumdc2 (𝜑DECID 𝑁𝐴)
Distinct variable groups:   𝑥,𝑀   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑁(𝑥)

Proof of Theorem sumdc2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumdc2.ss . . 3 (𝜑𝐴 ⊆ (ℤ𝑀))
2 sumdc2.dc . . . . 5 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)DECID 𝑥𝐴)
3 eleq1 2250 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
43dcbid 839 . . . . . . 7 (𝑥 = 𝑦 → (DECID 𝑥𝐴DECID 𝑦𝐴))
54rspccv 2850 . . . . . 6 (∀𝑥 ∈ (ℤ𝑀)DECID 𝑥𝐴 → (𝑦 ∈ (ℤ𝑀) → DECID 𝑦𝐴))
6 exmiddc 837 . . . . . 6 (DECID 𝑦𝐴 → (𝑦𝐴 ∨ ¬ 𝑦𝐴))
75, 6syl6 33 . . . . 5 (∀𝑥 ∈ (ℤ𝑀)DECID 𝑥𝐴 → (𝑦 ∈ (ℤ𝑀) → (𝑦𝐴 ∨ ¬ 𝑦𝐴)))
82, 7syl 14 . . . 4 (𝜑 → (𝑦 ∈ (ℤ𝑀) → (𝑦𝐴 ∨ ¬ 𝑦𝐴)))
98decidr 14901 . . 3 (𝜑𝐴 DECIDin (ℤ𝑀))
10 sumdc2.m . . . 4 (𝜑𝑀 ∈ ℤ)
11 uzdcinzz 14903 . . . 4 (𝑀 ∈ ℤ → (ℤ𝑀) DECIDin ℤ)
1210, 11syl 14 . . 3 (𝜑 → (ℤ𝑀) DECIDin ℤ)
131, 9, 12decidin 14902 . 2 (𝜑𝐴 DECIDin ℤ)
14 sumdc2.n . 2 (𝜑𝑁 ∈ ℤ)
15 df-dcin 14899 . . 3 (𝐴 DECIDin ℤ ↔ ∀𝑧 ∈ ℤ DECID 𝑧𝐴)
16 nfv 1538 . . . . . 6 𝑧DECID 𝑁𝐴
1716rspct 2846 . . . . 5 (∀𝑧(𝑧 = 𝑁 → (DECID 𝑧𝐴DECID 𝑁𝐴)) → (𝑁 ∈ ℤ → (∀𝑧 ∈ ℤ DECID 𝑧𝐴DECID 𝑁𝐴)))
18 eleq1 2250 . . . . . 6 (𝑧 = 𝑁 → (𝑧𝐴𝑁𝐴))
1918dcbid 839 . . . . 5 (𝑧 = 𝑁 → (DECID 𝑧𝐴DECID 𝑁𝐴))
2017, 19mpg 1461 . . . 4 (𝑁 ∈ ℤ → (∀𝑧 ∈ ℤ DECID 𝑧𝐴DECID 𝑁𝐴))
2120com12 30 . . 3 (∀𝑧 ∈ ℤ DECID 𝑧𝐴 → (𝑁 ∈ ℤ → DECID 𝑁𝐴))
2215, 21sylbi 121 . 2 (𝐴 DECIDin ℤ → (𝑁 ∈ ℤ → DECID 𝑁𝐴))
2313, 14, 22sylc 62 1 (𝜑DECID 𝑁𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wo 709  DECID wdc 835   = wceq 1363  wcel 2158  wral 2465  wss 3141  cfv 5228  cz 9267  cuz 9542   DECIDin wdcin 14898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-0id 7933  ax-rnegex 7934  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-ltadd 7941
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-iota 5190  df-fun 5230  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-inn 8934  df-n0 9191  df-z 9268  df-uz 9543  df-dcin 14899
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator