Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  sumdc2 GIF version

Theorem sumdc2 15529
Description: Alternate proof of sumdc 11540, without disjoint variable condition on 𝑁, 𝑥 (longer because the statement is taylored to the proof sumdc 11540). (Contributed by BJ, 19-Feb-2022.)
Hypotheses
Ref Expression
sumdc2.m (𝜑𝑀 ∈ ℤ)
sumdc2.ss (𝜑𝐴 ⊆ (ℤ𝑀))
sumdc2.dc (𝜑 → ∀𝑥 ∈ (ℤ𝑀)DECID 𝑥𝐴)
sumdc2.n (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
sumdc2 (𝜑DECID 𝑁𝐴)
Distinct variable groups:   𝑥,𝑀   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑁(𝑥)

Proof of Theorem sumdc2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumdc2.ss . . 3 (𝜑𝐴 ⊆ (ℤ𝑀))
2 sumdc2.dc . . . . 5 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)DECID 𝑥𝐴)
3 eleq1 2259 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
43dcbid 839 . . . . . . 7 (𝑥 = 𝑦 → (DECID 𝑥𝐴DECID 𝑦𝐴))
54rspccv 2865 . . . . . 6 (∀𝑥 ∈ (ℤ𝑀)DECID 𝑥𝐴 → (𝑦 ∈ (ℤ𝑀) → DECID 𝑦𝐴))
6 exmiddc 837 . . . . . 6 (DECID 𝑦𝐴 → (𝑦𝐴 ∨ ¬ 𝑦𝐴))
75, 6syl6 33 . . . . 5 (∀𝑥 ∈ (ℤ𝑀)DECID 𝑥𝐴 → (𝑦 ∈ (ℤ𝑀) → (𝑦𝐴 ∨ ¬ 𝑦𝐴)))
82, 7syl 14 . . . 4 (𝜑 → (𝑦 ∈ (ℤ𝑀) → (𝑦𝐴 ∨ ¬ 𝑦𝐴)))
98decidr 15526 . . 3 (𝜑𝐴 DECIDin (ℤ𝑀))
10 sumdc2.m . . . 4 (𝜑𝑀 ∈ ℤ)
11 uzdcinzz 15528 . . . 4 (𝑀 ∈ ℤ → (ℤ𝑀) DECIDin ℤ)
1210, 11syl 14 . . 3 (𝜑 → (ℤ𝑀) DECIDin ℤ)
131, 9, 12decidin 15527 . 2 (𝜑𝐴 DECIDin ℤ)
14 sumdc2.n . 2 (𝜑𝑁 ∈ ℤ)
15 df-dcin 15524 . . 3 (𝐴 DECIDin ℤ ↔ ∀𝑧 ∈ ℤ DECID 𝑧𝐴)
16 nfv 1542 . . . . . 6 𝑧DECID 𝑁𝐴
1716rspct 2861 . . . . 5 (∀𝑧(𝑧 = 𝑁 → (DECID 𝑧𝐴DECID 𝑁𝐴)) → (𝑁 ∈ ℤ → (∀𝑧 ∈ ℤ DECID 𝑧𝐴DECID 𝑁𝐴)))
18 eleq1 2259 . . . . . 6 (𝑧 = 𝑁 → (𝑧𝐴𝑁𝐴))
1918dcbid 839 . . . . 5 (𝑧 = 𝑁 → (DECID 𝑧𝐴DECID 𝑁𝐴))
2017, 19mpg 1465 . . . 4 (𝑁 ∈ ℤ → (∀𝑧 ∈ ℤ DECID 𝑧𝐴DECID 𝑁𝐴))
2120com12 30 . . 3 (∀𝑧 ∈ ℤ DECID 𝑧𝐴 → (𝑁 ∈ ℤ → DECID 𝑁𝐴))
2215, 21sylbi 121 . 2 (𝐴 DECIDin ℤ → (𝑁 ∈ ℤ → DECID 𝑁𝐴))
2313, 14, 22sylc 62 1 (𝜑DECID 𝑁𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  wral 2475  wss 3157  cfv 5259  cz 9343  cuz 9618   DECIDin wdcin 15523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-dcin 15524
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator