Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > sumdc2 | GIF version |
Description: Alternate proof of sumdc 11299, without disjoint variable condition on 𝑁, 𝑥 (longer because the statement is taylored to the proof sumdc 11299). (Contributed by BJ, 19-Feb-2022.) |
Ref | Expression |
---|---|
sumdc2.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
sumdc2.ss | ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) |
sumdc2.dc | ⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)DECID 𝑥 ∈ 𝐴) |
sumdc2.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
Ref | Expression |
---|---|
sumdc2 | ⊢ (𝜑 → DECID 𝑁 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumdc2.ss | . . 3 ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) | |
2 | sumdc2.dc | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)DECID 𝑥 ∈ 𝐴) | |
3 | eleq1 2229 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
4 | 3 | dcbid 828 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (DECID 𝑥 ∈ 𝐴 ↔ DECID 𝑦 ∈ 𝐴)) |
5 | 4 | rspccv 2827 | . . . . . 6 ⊢ (∀𝑥 ∈ (ℤ≥‘𝑀)DECID 𝑥 ∈ 𝐴 → (𝑦 ∈ (ℤ≥‘𝑀) → DECID 𝑦 ∈ 𝐴)) |
6 | exmiddc 826 | . . . . . 6 ⊢ (DECID 𝑦 ∈ 𝐴 → (𝑦 ∈ 𝐴 ∨ ¬ 𝑦 ∈ 𝐴)) | |
7 | 5, 6 | syl6 33 | . . . . 5 ⊢ (∀𝑥 ∈ (ℤ≥‘𝑀)DECID 𝑥 ∈ 𝐴 → (𝑦 ∈ (ℤ≥‘𝑀) → (𝑦 ∈ 𝐴 ∨ ¬ 𝑦 ∈ 𝐴))) |
8 | 2, 7 | syl 14 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ (ℤ≥‘𝑀) → (𝑦 ∈ 𝐴 ∨ ¬ 𝑦 ∈ 𝐴))) |
9 | 8 | decidr 13687 | . . 3 ⊢ (𝜑 → 𝐴 DECIDin (ℤ≥‘𝑀)) |
10 | sumdc2.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
11 | uzdcinzz 13689 | . . . 4 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) DECIDin ℤ) | |
12 | 10, 11 | syl 14 | . . 3 ⊢ (𝜑 → (ℤ≥‘𝑀) DECIDin ℤ) |
13 | 1, 9, 12 | decidin 13688 | . 2 ⊢ (𝜑 → 𝐴 DECIDin ℤ) |
14 | sumdc2.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
15 | df-dcin 13685 | . . 3 ⊢ (𝐴 DECIDin ℤ ↔ ∀𝑧 ∈ ℤ DECID 𝑧 ∈ 𝐴) | |
16 | nfv 1516 | . . . . . 6 ⊢ Ⅎ𝑧DECID 𝑁 ∈ 𝐴 | |
17 | 16 | rspct 2823 | . . . . 5 ⊢ (∀𝑧(𝑧 = 𝑁 → (DECID 𝑧 ∈ 𝐴 ↔ DECID 𝑁 ∈ 𝐴)) → (𝑁 ∈ ℤ → (∀𝑧 ∈ ℤ DECID 𝑧 ∈ 𝐴 → DECID 𝑁 ∈ 𝐴))) |
18 | eleq1 2229 | . . . . . 6 ⊢ (𝑧 = 𝑁 → (𝑧 ∈ 𝐴 ↔ 𝑁 ∈ 𝐴)) | |
19 | 18 | dcbid 828 | . . . . 5 ⊢ (𝑧 = 𝑁 → (DECID 𝑧 ∈ 𝐴 ↔ DECID 𝑁 ∈ 𝐴)) |
20 | 17, 19 | mpg 1439 | . . . 4 ⊢ (𝑁 ∈ ℤ → (∀𝑧 ∈ ℤ DECID 𝑧 ∈ 𝐴 → DECID 𝑁 ∈ 𝐴)) |
21 | 20 | com12 30 | . . 3 ⊢ (∀𝑧 ∈ ℤ DECID 𝑧 ∈ 𝐴 → (𝑁 ∈ ℤ → DECID 𝑁 ∈ 𝐴)) |
22 | 15, 21 | sylbi 120 | . 2 ⊢ (𝐴 DECIDin ℤ → (𝑁 ∈ ℤ → DECID 𝑁 ∈ 𝐴)) |
23 | 13, 14, 22 | sylc 62 | 1 ⊢ (𝜑 → DECID 𝑁 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 ∨ wo 698 DECID wdc 824 = wceq 1343 ∈ wcel 2136 ∀wral 2444 ⊆ wss 3116 ‘cfv 5188 ℤcz 9191 ℤ≥cuz 9466 DECIDin wdcin 13684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-dcin 13685 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |