Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  decidr GIF version

Theorem decidr 16090
Description: Sufficient condition for being decidable in another class. (Contributed by BJ, 19-Feb-2022.)
Hypothesis
Ref Expression
decidr.1 (𝜑 → (𝑥𝐵 → (𝑥𝐴 ∨ ¬ 𝑥𝐴)))
Assertion
Ref Expression
decidr (𝜑𝐴 DECIDin 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥

Proof of Theorem decidr
StepHypRef Expression
1 decidr.1 . . . 4 (𝜑 → (𝑥𝐵 → (𝑥𝐴 ∨ ¬ 𝑥𝐴)))
2 df-dc 840 . . . 4 (DECID 𝑥𝐴 ↔ (𝑥𝐴 ∨ ¬ 𝑥𝐴))
31, 2imbitrrdi 162 . . 3 (𝜑 → (𝑥𝐵DECID 𝑥𝐴))
43alrimiv 1920 . 2 (𝜑 → ∀𝑥(𝑥𝐵DECID 𝑥𝐴))
5 df-dcin 16088 . . 3 (𝐴 DECIDin 𝐵 ↔ ∀𝑥𝐵 DECID 𝑥𝐴)
6 df-ral 2513 . . 3 (∀𝑥𝐵 DECID 𝑥𝐴 ↔ ∀𝑥(𝑥𝐵DECID 𝑥𝐴))
75, 6bitri 184 . 2 (𝐴 DECIDin 𝐵 ↔ ∀𝑥(𝑥𝐵DECID 𝑥𝐴))
84, 7sylibr 134 1 (𝜑𝐴 DECIDin 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 713  DECID wdc 839  wal 1393  wcel 2200  wral 2508   DECIDin wdcin 16087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-17 1572
This theorem depends on definitions:  df-bi 117  df-dc 840  df-ral 2513  df-dcin 16088
This theorem is referenced by:  decidin  16091  uzdcinzz  16092  sumdc2  16093
  Copyright terms: Public domain W3C validator