Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > decidr | GIF version |
Description: Sufficient condition for being decidable in another class. (Contributed by BJ, 19-Feb-2022.) |
Ref | Expression |
---|---|
decidr.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴))) |
Ref | Expression |
---|---|
decidr | ⊢ (𝜑 → 𝐴 DECIDin 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decidr.1 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴))) | |
2 | df-dc 825 | . . . 4 ⊢ (DECID 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴)) | |
3 | 1, 2 | syl6ibr 161 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → DECID 𝑥 ∈ 𝐴)) |
4 | 3 | alrimiv 1862 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐵 → DECID 𝑥 ∈ 𝐴)) |
5 | df-dcin 13675 | . . 3 ⊢ (𝐴 DECIDin 𝐵 ↔ ∀𝑥 ∈ 𝐵 DECID 𝑥 ∈ 𝐴) | |
6 | df-ral 2449 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 DECID 𝑥 ∈ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐵 → DECID 𝑥 ∈ 𝐴)) | |
7 | 5, 6 | bitri 183 | . 2 ⊢ (𝐴 DECIDin 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 → DECID 𝑥 ∈ 𝐴)) |
8 | 4, 7 | sylibr 133 | 1 ⊢ (𝜑 → 𝐴 DECIDin 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 698 DECID wdc 824 ∀wal 1341 ∈ wcel 2136 ∀wral 2444 DECIDin wdcin 13674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-17 1514 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-ral 2449 df-dcin 13675 |
This theorem is referenced by: decidin 13678 uzdcinzz 13679 sumdc2 13680 |
Copyright terms: Public domain | W3C validator |