| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > decidr | GIF version | ||
| Description: Sufficient condition for being decidable in another class. (Contributed by BJ, 19-Feb-2022.) |
| Ref | Expression |
|---|---|
| decidr.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴))) |
| Ref | Expression |
|---|---|
| decidr | ⊢ (𝜑 → 𝐴 DECIDin 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decidr.1 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴))) | |
| 2 | df-dc 836 | . . . 4 ⊢ (DECID 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴)) | |
| 3 | 1, 2 | imbitrrdi 162 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → DECID 𝑥 ∈ 𝐴)) |
| 4 | 3 | alrimiv 1888 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐵 → DECID 𝑥 ∈ 𝐴)) |
| 5 | df-dcin 15440 | . . 3 ⊢ (𝐴 DECIDin 𝐵 ↔ ∀𝑥 ∈ 𝐵 DECID 𝑥 ∈ 𝐴) | |
| 6 | df-ral 2480 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 DECID 𝑥 ∈ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐵 → DECID 𝑥 ∈ 𝐴)) | |
| 7 | 5, 6 | bitri 184 | . 2 ⊢ (𝐴 DECIDin 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 → DECID 𝑥 ∈ 𝐴)) |
| 8 | 4, 7 | sylibr 134 | 1 ⊢ (𝜑 → 𝐴 DECIDin 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 DECID wdc 835 ∀wal 1362 ∈ wcel 2167 ∀wral 2475 DECIDin wdcin 15439 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-ral 2480 df-dcin 15440 |
| This theorem is referenced by: decidin 15443 uzdcinzz 15444 sumdc2 15445 |
| Copyright terms: Public domain | W3C validator |