| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > decidi | GIF version | ||
| Description: Property of being decidable in another class. (Contributed by BJ, 19-Feb-2022.) |
| Ref | Expression |
|---|---|
| decidi | ⊢ (𝐴 DECIDin 𝐵 → (𝑋 ∈ 𝐵 → (𝑋 ∈ 𝐴 ∨ ¬ 𝑋 ∈ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dcin 15864 | . 2 ⊢ (𝐴 DECIDin 𝐵 ↔ ∀𝑥 ∈ 𝐵 DECID 𝑥 ∈ 𝐴) | |
| 2 | df-dc 837 | . . . 4 ⊢ (DECID 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴)) | |
| 3 | 2 | ralbii 2513 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 DECID 𝑥 ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴)) |
| 4 | eleq1 2269 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴)) | |
| 5 | 4 | notbid 669 | . . . . 5 ⊢ (𝑥 = 𝑋 → (¬ 𝑥 ∈ 𝐴 ↔ ¬ 𝑋 ∈ 𝐴)) |
| 6 | 4, 5 | orbi12d 795 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴) ↔ (𝑋 ∈ 𝐴 ∨ ¬ 𝑋 ∈ 𝐴))) |
| 7 | 6 | rspccv 2878 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴) → (𝑋 ∈ 𝐵 → (𝑋 ∈ 𝐴 ∨ ¬ 𝑋 ∈ 𝐴))) |
| 8 | 3, 7 | sylbi 121 | . 2 ⊢ (∀𝑥 ∈ 𝐵 DECID 𝑥 ∈ 𝐴 → (𝑋 ∈ 𝐵 → (𝑋 ∈ 𝐴 ∨ ¬ 𝑋 ∈ 𝐴))) |
| 9 | 1, 8 | sylbi 121 | 1 ⊢ (𝐴 DECIDin 𝐵 → (𝑋 ∈ 𝐵 → (𝑋 ∈ 𝐴 ∨ ¬ 𝑋 ∈ 𝐴))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 710 DECID wdc 836 = wceq 1373 ∈ wcel 2177 ∀wral 2485 DECIDin wdcin 15863 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-dcin 15864 |
| This theorem is referenced by: decidin 15867 |
| Copyright terms: Public domain | W3C validator |