![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > decidi | GIF version |
Description: Property of being decidable in another class. (Contributed by BJ, 19-Feb-2022.) |
Ref | Expression |
---|---|
decidi | ⊢ (𝐴 DECIDin 𝐵 → (𝑋 ∈ 𝐵 → (𝑋 ∈ 𝐴 ∨ ¬ 𝑋 ∈ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dcin 15286 | . 2 ⊢ (𝐴 DECIDin 𝐵 ↔ ∀𝑥 ∈ 𝐵 DECID 𝑥 ∈ 𝐴) | |
2 | df-dc 836 | . . . 4 ⊢ (DECID 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴)) | |
3 | 2 | ralbii 2500 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 DECID 𝑥 ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴)) |
4 | eleq1 2256 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴)) | |
5 | 4 | notbid 668 | . . . . 5 ⊢ (𝑥 = 𝑋 → (¬ 𝑥 ∈ 𝐴 ↔ ¬ 𝑋 ∈ 𝐴)) |
6 | 4, 5 | orbi12d 794 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴) ↔ (𝑋 ∈ 𝐴 ∨ ¬ 𝑋 ∈ 𝐴))) |
7 | 6 | rspccv 2861 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴) → (𝑋 ∈ 𝐵 → (𝑋 ∈ 𝐴 ∨ ¬ 𝑋 ∈ 𝐴))) |
8 | 3, 7 | sylbi 121 | . 2 ⊢ (∀𝑥 ∈ 𝐵 DECID 𝑥 ∈ 𝐴 → (𝑋 ∈ 𝐵 → (𝑋 ∈ 𝐴 ∨ ¬ 𝑋 ∈ 𝐴))) |
9 | 1, 8 | sylbi 121 | 1 ⊢ (𝐴 DECIDin 𝐵 → (𝑋 ∈ 𝐵 → (𝑋 ∈ 𝐴 ∨ ¬ 𝑋 ∈ 𝐴))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 DECID wdc 835 = wceq 1364 ∈ wcel 2164 ∀wral 2472 DECIDin wdcin 15285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-dcin 15286 |
This theorem is referenced by: decidin 15289 |
Copyright terms: Public domain | W3C validator |