Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  decidi GIF version

Theorem decidi 15865
Description: Property of being decidable in another class. (Contributed by BJ, 19-Feb-2022.)
Assertion
Ref Expression
decidi (𝐴 DECIDin 𝐵 → (𝑋𝐵 → (𝑋𝐴 ∨ ¬ 𝑋𝐴)))

Proof of Theorem decidi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-dcin 15864 . 2 (𝐴 DECIDin 𝐵 ↔ ∀𝑥𝐵 DECID 𝑥𝐴)
2 df-dc 837 . . . 4 (DECID 𝑥𝐴 ↔ (𝑥𝐴 ∨ ¬ 𝑥𝐴))
32ralbii 2513 . . 3 (∀𝑥𝐵 DECID 𝑥𝐴 ↔ ∀𝑥𝐵 (𝑥𝐴 ∨ ¬ 𝑥𝐴))
4 eleq1 2269 . . . . 5 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
54notbid 669 . . . . 5 (𝑥 = 𝑋 → (¬ 𝑥𝐴 ↔ ¬ 𝑋𝐴))
64, 5orbi12d 795 . . . 4 (𝑥 = 𝑋 → ((𝑥𝐴 ∨ ¬ 𝑥𝐴) ↔ (𝑋𝐴 ∨ ¬ 𝑋𝐴)))
76rspccv 2878 . . 3 (∀𝑥𝐵 (𝑥𝐴 ∨ ¬ 𝑥𝐴) → (𝑋𝐵 → (𝑋𝐴 ∨ ¬ 𝑋𝐴)))
83, 7sylbi 121 . 2 (∀𝑥𝐵 DECID 𝑥𝐴 → (𝑋𝐵 → (𝑋𝐴 ∨ ¬ 𝑋𝐴)))
91, 8sylbi 121 1 (𝐴 DECIDin 𝐵 → (𝑋𝐵 → (𝑋𝐴 ∨ ¬ 𝑋𝐴)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 710  DECID wdc 836   = wceq 1373  wcel 2177  wral 2485   DECIDin wdcin 15863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-dc 837  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-dcin 15864
This theorem is referenced by:  decidin  15867
  Copyright terms: Public domain W3C validator