Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  decidi GIF version

Theorem decidi 15287
Description: Property of being decidable in another class. (Contributed by BJ, 19-Feb-2022.)
Assertion
Ref Expression
decidi (𝐴 DECIDin 𝐵 → (𝑋𝐵 → (𝑋𝐴 ∨ ¬ 𝑋𝐴)))

Proof of Theorem decidi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-dcin 15286 . 2 (𝐴 DECIDin 𝐵 ↔ ∀𝑥𝐵 DECID 𝑥𝐴)
2 df-dc 836 . . . 4 (DECID 𝑥𝐴 ↔ (𝑥𝐴 ∨ ¬ 𝑥𝐴))
32ralbii 2500 . . 3 (∀𝑥𝐵 DECID 𝑥𝐴 ↔ ∀𝑥𝐵 (𝑥𝐴 ∨ ¬ 𝑥𝐴))
4 eleq1 2256 . . . . 5 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
54notbid 668 . . . . 5 (𝑥 = 𝑋 → (¬ 𝑥𝐴 ↔ ¬ 𝑋𝐴))
64, 5orbi12d 794 . . . 4 (𝑥 = 𝑋 → ((𝑥𝐴 ∨ ¬ 𝑥𝐴) ↔ (𝑋𝐴 ∨ ¬ 𝑋𝐴)))
76rspccv 2861 . . 3 (∀𝑥𝐵 (𝑥𝐴 ∨ ¬ 𝑥𝐴) → (𝑋𝐵 → (𝑋𝐴 ∨ ¬ 𝑋𝐴)))
83, 7sylbi 121 . 2 (∀𝑥𝐵 DECID 𝑥𝐴 → (𝑋𝐵 → (𝑋𝐴 ∨ ¬ 𝑋𝐴)))
91, 8sylbi 121 1 (𝐴 DECIDin 𝐵 → (𝑋𝐵 → (𝑋𝐴 ∨ ¬ 𝑋𝐴)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 709  DECID wdc 835   = wceq 1364  wcel 2164  wral 2472   DECIDin wdcin 15285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-dcin 15286
This theorem is referenced by:  decidin  15289
  Copyright terms: Public domain W3C validator