| Mathbox for BJ | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > decidi | GIF version | ||
| Description: Property of being decidable in another class. (Contributed by BJ, 19-Feb-2022.) | 
| Ref | Expression | 
|---|---|
| decidi | ⊢ (𝐴 DECIDin 𝐵 → (𝑋 ∈ 𝐵 → (𝑋 ∈ 𝐴 ∨ ¬ 𝑋 ∈ 𝐴))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-dcin 15440 | . 2 ⊢ (𝐴 DECIDin 𝐵 ↔ ∀𝑥 ∈ 𝐵 DECID 𝑥 ∈ 𝐴) | |
| 2 | df-dc 836 | . . . 4 ⊢ (DECID 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴)) | |
| 3 | 2 | ralbii 2503 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 DECID 𝑥 ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴)) | 
| 4 | eleq1 2259 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴)) | |
| 5 | 4 | notbid 668 | . . . . 5 ⊢ (𝑥 = 𝑋 → (¬ 𝑥 ∈ 𝐴 ↔ ¬ 𝑋 ∈ 𝐴)) | 
| 6 | 4, 5 | orbi12d 794 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴) ↔ (𝑋 ∈ 𝐴 ∨ ¬ 𝑋 ∈ 𝐴))) | 
| 7 | 6 | rspccv 2865 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴) → (𝑋 ∈ 𝐵 → (𝑋 ∈ 𝐴 ∨ ¬ 𝑋 ∈ 𝐴))) | 
| 8 | 3, 7 | sylbi 121 | . 2 ⊢ (∀𝑥 ∈ 𝐵 DECID 𝑥 ∈ 𝐴 → (𝑋 ∈ 𝐵 → (𝑋 ∈ 𝐴 ∨ ¬ 𝑋 ∈ 𝐴))) | 
| 9 | 1, 8 | sylbi 121 | 1 ⊢ (𝐴 DECIDin 𝐵 → (𝑋 ∈ 𝐵 → (𝑋 ∈ 𝐴 ∨ ¬ 𝑋 ∈ 𝐴))) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 DECID wdc 835 = wceq 1364 ∈ wcel 2167 ∀wral 2475 DECIDin wdcin 15439 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-dcin 15440 | 
| This theorem is referenced by: decidin 15443 | 
| Copyright terms: Public domain | W3C validator |