| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > decidi | GIF version | ||
| Description: Property of being decidable in another class. (Contributed by BJ, 19-Feb-2022.) |
| Ref | Expression |
|---|---|
| decidi | ⊢ (𝐴 DECIDin 𝐵 → (𝑋 ∈ 𝐵 → (𝑋 ∈ 𝐴 ∨ ¬ 𝑋 ∈ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dcin 16088 | . 2 ⊢ (𝐴 DECIDin 𝐵 ↔ ∀𝑥 ∈ 𝐵 DECID 𝑥 ∈ 𝐴) | |
| 2 | df-dc 840 | . . . 4 ⊢ (DECID 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴)) | |
| 3 | 2 | ralbii 2536 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 DECID 𝑥 ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴)) |
| 4 | eleq1 2292 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴)) | |
| 5 | 4 | notbid 671 | . . . . 5 ⊢ (𝑥 = 𝑋 → (¬ 𝑥 ∈ 𝐴 ↔ ¬ 𝑋 ∈ 𝐴)) |
| 6 | 4, 5 | orbi12d 798 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴) ↔ (𝑋 ∈ 𝐴 ∨ ¬ 𝑋 ∈ 𝐴))) |
| 7 | 6 | rspccv 2904 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴) → (𝑋 ∈ 𝐵 → (𝑋 ∈ 𝐴 ∨ ¬ 𝑋 ∈ 𝐴))) |
| 8 | 3, 7 | sylbi 121 | . 2 ⊢ (∀𝑥 ∈ 𝐵 DECID 𝑥 ∈ 𝐴 → (𝑋 ∈ 𝐵 → (𝑋 ∈ 𝐴 ∨ ¬ 𝑋 ∈ 𝐴))) |
| 9 | 1, 8 | sylbi 121 | 1 ⊢ (𝐴 DECIDin 𝐵 → (𝑋 ∈ 𝐵 → (𝑋 ∈ 𝐴 ∨ ¬ 𝑋 ∈ 𝐴))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 713 DECID wdc 839 = wceq 1395 ∈ wcel 2200 ∀wral 2508 DECIDin wdcin 16087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-dcin 16088 |
| This theorem is referenced by: decidin 16091 |
| Copyright terms: Public domain | W3C validator |