Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  decidi GIF version

Theorem decidi 13830
Description: Property of being decidable in another class. (Contributed by BJ, 19-Feb-2022.)
Assertion
Ref Expression
decidi (𝐴 DECIDin 𝐵 → (𝑋𝐵 → (𝑋𝐴 ∨ ¬ 𝑋𝐴)))

Proof of Theorem decidi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-dcin 13829 . 2 (𝐴 DECIDin 𝐵 ↔ ∀𝑥𝐵 DECID 𝑥𝐴)
2 df-dc 830 . . . 4 (DECID 𝑥𝐴 ↔ (𝑥𝐴 ∨ ¬ 𝑥𝐴))
32ralbii 2476 . . 3 (∀𝑥𝐵 DECID 𝑥𝐴 ↔ ∀𝑥𝐵 (𝑥𝐴 ∨ ¬ 𝑥𝐴))
4 eleq1 2233 . . . . 5 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
54notbid 662 . . . . 5 (𝑥 = 𝑋 → (¬ 𝑥𝐴 ↔ ¬ 𝑋𝐴))
64, 5orbi12d 788 . . . 4 (𝑥 = 𝑋 → ((𝑥𝐴 ∨ ¬ 𝑥𝐴) ↔ (𝑋𝐴 ∨ ¬ 𝑋𝐴)))
76rspccv 2831 . . 3 (∀𝑥𝐵 (𝑥𝐴 ∨ ¬ 𝑥𝐴) → (𝑋𝐵 → (𝑋𝐴 ∨ ¬ 𝑋𝐴)))
83, 7sylbi 120 . 2 (∀𝑥𝐵 DECID 𝑥𝐴 → (𝑋𝐵 → (𝑋𝐴 ∨ ¬ 𝑋𝐴)))
91, 8sylbi 120 1 (𝐴 DECIDin 𝐵 → (𝑋𝐵 → (𝑋𝐴 ∨ ¬ 𝑋𝐴)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 703  DECID wdc 829   = wceq 1348  wcel 2141  wral 2448   DECIDin wdcin 13828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-dc 830  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-dcin 13829
This theorem is referenced by:  decidin  13832
  Copyright terms: Public domain W3C validator