Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > decidi | GIF version |
Description: Property of being decidable in another class. (Contributed by BJ, 19-Feb-2022.) |
Ref | Expression |
---|---|
decidi | ⊢ (𝐴 DECIDin 𝐵 → (𝑋 ∈ 𝐵 → (𝑋 ∈ 𝐴 ∨ ¬ 𝑋 ∈ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dcin 13675 | . 2 ⊢ (𝐴 DECIDin 𝐵 ↔ ∀𝑥 ∈ 𝐵 DECID 𝑥 ∈ 𝐴) | |
2 | df-dc 825 | . . . 4 ⊢ (DECID 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴)) | |
3 | 2 | ralbii 2472 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 DECID 𝑥 ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴)) |
4 | eleq1 2229 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴)) | |
5 | 4 | notbid 657 | . . . . 5 ⊢ (𝑥 = 𝑋 → (¬ 𝑥 ∈ 𝐴 ↔ ¬ 𝑋 ∈ 𝐴)) |
6 | 4, 5 | orbi12d 783 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴) ↔ (𝑋 ∈ 𝐴 ∨ ¬ 𝑋 ∈ 𝐴))) |
7 | 6 | rspccv 2827 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴) → (𝑋 ∈ 𝐵 → (𝑋 ∈ 𝐴 ∨ ¬ 𝑋 ∈ 𝐴))) |
8 | 3, 7 | sylbi 120 | . 2 ⊢ (∀𝑥 ∈ 𝐵 DECID 𝑥 ∈ 𝐴 → (𝑋 ∈ 𝐵 → (𝑋 ∈ 𝐴 ∨ ¬ 𝑋 ∈ 𝐴))) |
9 | 1, 8 | sylbi 120 | 1 ⊢ (𝐴 DECIDin 𝐵 → (𝑋 ∈ 𝐵 → (𝑋 ∈ 𝐴 ∨ ¬ 𝑋 ∈ 𝐴))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 698 DECID wdc 824 = wceq 1343 ∈ wcel 2136 ∀wral 2444 DECIDin wdcin 13674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-dcin 13675 |
This theorem is referenced by: decidin 13678 |
Copyright terms: Public domain | W3C validator |