ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-djud GIF version

Definition df-djud 7068
Description: The "domain-disjoint-union" of two relations: if 𝑅 ⊆ (𝐴 × 𝑋) and 𝑆 ⊆ (𝐵 × 𝑋) are two binary relations, then (𝑅d 𝑆) is the binary relation from (𝐴𝐵) to 𝑋 having the universal property of disjoint unions (see updjud 7047 in the case of functions).

Remark: the restrictions to dom 𝑅 (resp. dom 𝑆) are not necessary since extra stuff would be thrown away in the post-composition with 𝑅 (resp. 𝑆), as in df-case 7049, but they are explicitly written for clarity. (Contributed by MC and BJ, 10-Jul-2022.)

Assertion
Ref Expression
df-djud (𝑅d 𝑆) = ((𝑅(inl ↾ dom 𝑅)) ∪ (𝑆(inr ↾ dom 𝑆)))

Detailed syntax breakdown of Definition df-djud
StepHypRef Expression
1 cR . . 3 class 𝑅
2 cS . . 3 class 𝑆
31, 2cdjud 7067 . 2 class (𝑅d 𝑆)
4 cinl 7010 . . . . . 6 class inl
51cdm 4604 . . . . . 6 class dom 𝑅
64, 5cres 4606 . . . . 5 class (inl ↾ dom 𝑅)
76ccnv 4603 . . . 4 class (inl ↾ dom 𝑅)
81, 7ccom 4608 . . 3 class (𝑅(inl ↾ dom 𝑅))
9 cinr 7011 . . . . . 6 class inr
102cdm 4604 . . . . . 6 class dom 𝑆
119, 10cres 4606 . . . . 5 class (inr ↾ dom 𝑆)
1211ccnv 4603 . . . 4 class (inr ↾ dom 𝑆)
132, 12ccom 4608 . . 3 class (𝑆(inr ↾ dom 𝑆))
148, 13cun 3114 . 2 class ((𝑅(inl ↾ dom 𝑅)) ∪ (𝑆(inr ↾ dom 𝑆)))
153, 14wceq 1343 1 wff (𝑅d 𝑆) = ((𝑅(inl ↾ dom 𝑅)) ∪ (𝑆(inr ↾ dom 𝑆)))
Colors of variables: wff set class
This definition is referenced by:  djufun  7069  djudm  7070  djuinj  7071
  Copyright terms: Public domain W3C validator