Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-djud | GIF version |
Description: The
"domain-disjoint-union" of two relations: if 𝑅 ⊆ (𝐴 × 𝑋) and
𝑆
⊆ (𝐵 × 𝑋) are two binary
relations, then (𝑅 ⊔d 𝑆) is the
binary relation from (𝐴 ⊔ 𝐵) to 𝑋 having the universal
property of disjoint unions (see updjud 7047 in the case of functions).
Remark: the restrictions to dom 𝑅 (resp. dom 𝑆) are not necessary since extra stuff would be thrown away in the post-composition with 𝑅 (resp. 𝑆), as in df-case 7049, but they are explicitly written for clarity. (Contributed by MC and BJ, 10-Jul-2022.) |
Ref | Expression |
---|---|
df-djud | ⊢ (𝑅 ⊔d 𝑆) = ((𝑅 ∘ ◡(inl ↾ dom 𝑅)) ∪ (𝑆 ∘ ◡(inr ↾ dom 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cR | . . 3 class 𝑅 | |
2 | cS | . . 3 class 𝑆 | |
3 | 1, 2 | cdjud 7067 | . 2 class (𝑅 ⊔d 𝑆) |
4 | cinl 7010 | . . . . . 6 class inl | |
5 | 1 | cdm 4604 | . . . . . 6 class dom 𝑅 |
6 | 4, 5 | cres 4606 | . . . . 5 class (inl ↾ dom 𝑅) |
7 | 6 | ccnv 4603 | . . . 4 class ◡(inl ↾ dom 𝑅) |
8 | 1, 7 | ccom 4608 | . . 3 class (𝑅 ∘ ◡(inl ↾ dom 𝑅)) |
9 | cinr 7011 | . . . . . 6 class inr | |
10 | 2 | cdm 4604 | . . . . . 6 class dom 𝑆 |
11 | 9, 10 | cres 4606 | . . . . 5 class (inr ↾ dom 𝑆) |
12 | 11 | ccnv 4603 | . . . 4 class ◡(inr ↾ dom 𝑆) |
13 | 2, 12 | ccom 4608 | . . 3 class (𝑆 ∘ ◡(inr ↾ dom 𝑆)) |
14 | 8, 13 | cun 3114 | . 2 class ((𝑅 ∘ ◡(inl ↾ dom 𝑅)) ∪ (𝑆 ∘ ◡(inr ↾ dom 𝑆))) |
15 | 3, 14 | wceq 1343 | 1 wff (𝑅 ⊔d 𝑆) = ((𝑅 ∘ ◡(inl ↾ dom 𝑅)) ∪ (𝑆 ∘ ◡(inr ↾ dom 𝑆))) |
Colors of variables: wff set class |
This definition is referenced by: djufun 7069 djudm 7070 djuinj 7071 |
Copyright terms: Public domain | W3C validator |