ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuinj GIF version

Theorem djuinj 7165
Description: The "domain-disjoint-union" of two injective relations with disjoint ranges is an injective relation. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
djuinj.r (𝜑 → Fun 𝑅)
djuinj.s (𝜑 → Fun 𝑆)
djuinj.disj (𝜑 → (ran 𝑅 ∩ ran 𝑆) = ∅)
Assertion
Ref Expression
djuinj (𝜑 → Fun (𝑅d 𝑆))

Proof of Theorem djuinj
StepHypRef Expression
1 inlresf1 7120 . . . . . . 7 (inl ↾ dom 𝑅):dom 𝑅1-1→(dom 𝑅𝐴)
2 f1fun 5462 . . . . . . 7 ((inl ↾ dom 𝑅):dom 𝑅1-1→(dom 𝑅𝐴) → Fun (inl ↾ dom 𝑅))
31, 2ax-mp 5 . . . . . 6 Fun (inl ↾ dom 𝑅)
4 funcnvcnv 5313 . . . . . 6 (Fun (inl ↾ dom 𝑅) → Fun (inl ↾ dom 𝑅))
53, 4ax-mp 5 . . . . 5 Fun (inl ↾ dom 𝑅)
6 djuinj.r . . . . 5 (𝜑 → Fun 𝑅)
7 funco 5294 . . . . 5 ((Fun (inl ↾ dom 𝑅) ∧ Fun 𝑅) → Fun ((inl ↾ dom 𝑅) ∘ 𝑅))
85, 6, 7sylancr 414 . . . 4 (𝜑 → Fun ((inl ↾ dom 𝑅) ∘ 𝑅))
9 cnvco 4847 . . . . 5 (𝑅(inl ↾ dom 𝑅)) = ((inl ↾ dom 𝑅) ∘ 𝑅)
109funeqi 5275 . . . 4 (Fun (𝑅(inl ↾ dom 𝑅)) ↔ Fun ((inl ↾ dom 𝑅) ∘ 𝑅))
118, 10sylibr 134 . . 3 (𝜑 → Fun (𝑅(inl ↾ dom 𝑅)))
12 inrresf1 7121 . . . . . . 7 (inr ↾ dom 𝑆):dom 𝑆1-1→(𝐴 ⊔ dom 𝑆)
13 f1fun 5462 . . . . . . 7 ((inr ↾ dom 𝑆):dom 𝑆1-1→(𝐴 ⊔ dom 𝑆) → Fun (inr ↾ dom 𝑆))
1412, 13ax-mp 5 . . . . . 6 Fun (inr ↾ dom 𝑆)
15 funcnvcnv 5313 . . . . . 6 (Fun (inr ↾ dom 𝑆) → Fun (inr ↾ dom 𝑆))
1614, 15ax-mp 5 . . . . 5 Fun (inr ↾ dom 𝑆)
17 djuinj.s . . . . 5 (𝜑 → Fun 𝑆)
18 funco 5294 . . . . 5 ((Fun (inr ↾ dom 𝑆) ∧ Fun 𝑆) → Fun ((inr ↾ dom 𝑆) ∘ 𝑆))
1916, 17, 18sylancr 414 . . . 4 (𝜑 → Fun ((inr ↾ dom 𝑆) ∘ 𝑆))
20 cnvco 4847 . . . . 5 (𝑆(inr ↾ dom 𝑆)) = ((inr ↾ dom 𝑆) ∘ 𝑆)
2120funeqi 5275 . . . 4 (Fun (𝑆(inr ↾ dom 𝑆)) ↔ Fun ((inr ↾ dom 𝑆) ∘ 𝑆))
2219, 21sylibr 134 . . 3 (𝜑 → Fun (𝑆(inr ↾ dom 𝑆)))
23 df-rn 4670 . . . . . . 7 ran (𝑅(inl ↾ dom 𝑅)) = dom (𝑅(inl ↾ dom 𝑅))
24 rncoss 4932 . . . . . . 7 ran (𝑅(inl ↾ dom 𝑅)) ⊆ ran 𝑅
2523, 24eqsstrri 3212 . . . . . 6 dom (𝑅(inl ↾ dom 𝑅)) ⊆ ran 𝑅
26 df-rn 4670 . . . . . . 7 ran (𝑆(inr ↾ dom 𝑆)) = dom (𝑆(inr ↾ dom 𝑆))
27 rncoss 4932 . . . . . . 7 ran (𝑆(inr ↾ dom 𝑆)) ⊆ ran 𝑆
2826, 27eqsstrri 3212 . . . . . 6 dom (𝑆(inr ↾ dom 𝑆)) ⊆ ran 𝑆
29 ss2in 3387 . . . . . 6 ((dom (𝑅(inl ↾ dom 𝑅)) ⊆ ran 𝑅 ∧ dom (𝑆(inr ↾ dom 𝑆)) ⊆ ran 𝑆) → (dom (𝑅(inl ↾ dom 𝑅)) ∩ dom (𝑆(inr ↾ dom 𝑆))) ⊆ (ran 𝑅 ∩ ran 𝑆))
3025, 28, 29mp2an 426 . . . . 5 (dom (𝑅(inl ↾ dom 𝑅)) ∩ dom (𝑆(inr ↾ dom 𝑆))) ⊆ (ran 𝑅 ∩ ran 𝑆)
31 djuinj.disj . . . . 5 (𝜑 → (ran 𝑅 ∩ ran 𝑆) = ∅)
3230, 31sseqtrid 3229 . . . 4 (𝜑 → (dom (𝑅(inl ↾ dom 𝑅)) ∩ dom (𝑆(inr ↾ dom 𝑆))) ⊆ ∅)
33 ss0 3487 . . . 4 ((dom (𝑅(inl ↾ dom 𝑅)) ∩ dom (𝑆(inr ↾ dom 𝑆))) ⊆ ∅ → (dom (𝑅(inl ↾ dom 𝑅)) ∩ dom (𝑆(inr ↾ dom 𝑆))) = ∅)
3432, 33syl 14 . . 3 (𝜑 → (dom (𝑅(inl ↾ dom 𝑅)) ∩ dom (𝑆(inr ↾ dom 𝑆))) = ∅)
35 funun 5298 . . 3 (((Fun (𝑅(inl ↾ dom 𝑅)) ∧ Fun (𝑆(inr ↾ dom 𝑆))) ∧ (dom (𝑅(inl ↾ dom 𝑅)) ∩ dom (𝑆(inr ↾ dom 𝑆))) = ∅) → Fun ((𝑅(inl ↾ dom 𝑅)) ∪ (𝑆(inr ↾ dom 𝑆))))
3611, 22, 34, 35syl21anc 1248 . 2 (𝜑 → Fun ((𝑅(inl ↾ dom 𝑅)) ∪ (𝑆(inr ↾ dom 𝑆))))
37 df-djud 7162 . . . . 5 (𝑅d 𝑆) = ((𝑅(inl ↾ dom 𝑅)) ∪ (𝑆(inr ↾ dom 𝑆)))
3837cnveqi 4837 . . . 4 (𝑅d 𝑆) = ((𝑅(inl ↾ dom 𝑅)) ∪ (𝑆(inr ↾ dom 𝑆)))
39 cnvun 5071 . . . 4 ((𝑅(inl ↾ dom 𝑅)) ∪ (𝑆(inr ↾ dom 𝑆))) = ((𝑅(inl ↾ dom 𝑅)) ∪ (𝑆(inr ↾ dom 𝑆)))
4038, 39eqtri 2214 . . 3 (𝑅d 𝑆) = ((𝑅(inl ↾ dom 𝑅)) ∪ (𝑆(inr ↾ dom 𝑆)))
4140funeqi 5275 . 2 (Fun (𝑅d 𝑆) ↔ Fun ((𝑅(inl ↾ dom 𝑅)) ∪ (𝑆(inr ↾ dom 𝑆))))
4236, 41sylibr 134 1 (𝜑 → Fun (𝑅d 𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  cun 3151  cin 3152  wss 3153  c0 3446  ccnv 4658  dom cdm 4659  ran crn 4660  cres 4661  ccom 4663  Fun wfun 5248  1-1wf1 5251  cdju 7096  inlcinl 7104  inrcinr 7105  d cdjud 7161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1st 6193  df-2nd 6194  df-1o 6469  df-dju 7097  df-inl 7106  df-inr 7107  df-djud 7162
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator