ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuinj GIF version

Theorem djuinj 7051
Description: The "domain-disjoint-union" of two injective relations with disjoint ranges is an injective relation. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
djuinj.r (𝜑 → Fun 𝑅)
djuinj.s (𝜑 → Fun 𝑆)
djuinj.disj (𝜑 → (ran 𝑅 ∩ ran 𝑆) = ∅)
Assertion
Ref Expression
djuinj (𝜑 → Fun (𝑅d 𝑆))

Proof of Theorem djuinj
StepHypRef Expression
1 inlresf1 7006 . . . . . . 7 (inl ↾ dom 𝑅):dom 𝑅1-1→(dom 𝑅𝐴)
2 f1fun 5379 . . . . . . 7 ((inl ↾ dom 𝑅):dom 𝑅1-1→(dom 𝑅𝐴) → Fun (inl ↾ dom 𝑅))
31, 2ax-mp 5 . . . . . 6 Fun (inl ↾ dom 𝑅)
4 funcnvcnv 5230 . . . . . 6 (Fun (inl ↾ dom 𝑅) → Fun (inl ↾ dom 𝑅))
53, 4ax-mp 5 . . . . 5 Fun (inl ↾ dom 𝑅)
6 djuinj.r . . . . 5 (𝜑 → Fun 𝑅)
7 funco 5211 . . . . 5 ((Fun (inl ↾ dom 𝑅) ∧ Fun 𝑅) → Fun ((inl ↾ dom 𝑅) ∘ 𝑅))
85, 6, 7sylancr 411 . . . 4 (𝜑 → Fun ((inl ↾ dom 𝑅) ∘ 𝑅))
9 cnvco 4772 . . . . 5 (𝑅(inl ↾ dom 𝑅)) = ((inl ↾ dom 𝑅) ∘ 𝑅)
109funeqi 5192 . . . 4 (Fun (𝑅(inl ↾ dom 𝑅)) ↔ Fun ((inl ↾ dom 𝑅) ∘ 𝑅))
118, 10sylibr 133 . . 3 (𝜑 → Fun (𝑅(inl ↾ dom 𝑅)))
12 inrresf1 7007 . . . . . . 7 (inr ↾ dom 𝑆):dom 𝑆1-1→(𝐴 ⊔ dom 𝑆)
13 f1fun 5379 . . . . . . 7 ((inr ↾ dom 𝑆):dom 𝑆1-1→(𝐴 ⊔ dom 𝑆) → Fun (inr ↾ dom 𝑆))
1412, 13ax-mp 5 . . . . . 6 Fun (inr ↾ dom 𝑆)
15 funcnvcnv 5230 . . . . . 6 (Fun (inr ↾ dom 𝑆) → Fun (inr ↾ dom 𝑆))
1614, 15ax-mp 5 . . . . 5 Fun (inr ↾ dom 𝑆)
17 djuinj.s . . . . 5 (𝜑 → Fun 𝑆)
18 funco 5211 . . . . 5 ((Fun (inr ↾ dom 𝑆) ∧ Fun 𝑆) → Fun ((inr ↾ dom 𝑆) ∘ 𝑆))
1916, 17, 18sylancr 411 . . . 4 (𝜑 → Fun ((inr ↾ dom 𝑆) ∘ 𝑆))
20 cnvco 4772 . . . . 5 (𝑆(inr ↾ dom 𝑆)) = ((inr ↾ dom 𝑆) ∘ 𝑆)
2120funeqi 5192 . . . 4 (Fun (𝑆(inr ↾ dom 𝑆)) ↔ Fun ((inr ↾ dom 𝑆) ∘ 𝑆))
2219, 21sylibr 133 . . 3 (𝜑 → Fun (𝑆(inr ↾ dom 𝑆)))
23 df-rn 4598 . . . . . . 7 ran (𝑅(inl ↾ dom 𝑅)) = dom (𝑅(inl ↾ dom 𝑅))
24 rncoss 4857 . . . . . . 7 ran (𝑅(inl ↾ dom 𝑅)) ⊆ ran 𝑅
2523, 24eqsstrri 3161 . . . . . 6 dom (𝑅(inl ↾ dom 𝑅)) ⊆ ran 𝑅
26 df-rn 4598 . . . . . . 7 ran (𝑆(inr ↾ dom 𝑆)) = dom (𝑆(inr ↾ dom 𝑆))
27 rncoss 4857 . . . . . . 7 ran (𝑆(inr ↾ dom 𝑆)) ⊆ ran 𝑆
2826, 27eqsstrri 3161 . . . . . 6 dom (𝑆(inr ↾ dom 𝑆)) ⊆ ran 𝑆
29 ss2in 3335 . . . . . 6 ((dom (𝑅(inl ↾ dom 𝑅)) ⊆ ran 𝑅 ∧ dom (𝑆(inr ↾ dom 𝑆)) ⊆ ran 𝑆) → (dom (𝑅(inl ↾ dom 𝑅)) ∩ dom (𝑆(inr ↾ dom 𝑆))) ⊆ (ran 𝑅 ∩ ran 𝑆))
3025, 28, 29mp2an 423 . . . . 5 (dom (𝑅(inl ↾ dom 𝑅)) ∩ dom (𝑆(inr ↾ dom 𝑆))) ⊆ (ran 𝑅 ∩ ran 𝑆)
31 djuinj.disj . . . . 5 (𝜑 → (ran 𝑅 ∩ ran 𝑆) = ∅)
3230, 31sseqtrid 3178 . . . 4 (𝜑 → (dom (𝑅(inl ↾ dom 𝑅)) ∩ dom (𝑆(inr ↾ dom 𝑆))) ⊆ ∅)
33 ss0 3434 . . . 4 ((dom (𝑅(inl ↾ dom 𝑅)) ∩ dom (𝑆(inr ↾ dom 𝑆))) ⊆ ∅ → (dom (𝑅(inl ↾ dom 𝑅)) ∩ dom (𝑆(inr ↾ dom 𝑆))) = ∅)
3432, 33syl 14 . . 3 (𝜑 → (dom (𝑅(inl ↾ dom 𝑅)) ∩ dom (𝑆(inr ↾ dom 𝑆))) = ∅)
35 funun 5215 . . 3 (((Fun (𝑅(inl ↾ dom 𝑅)) ∧ Fun (𝑆(inr ↾ dom 𝑆))) ∧ (dom (𝑅(inl ↾ dom 𝑅)) ∩ dom (𝑆(inr ↾ dom 𝑆))) = ∅) → Fun ((𝑅(inl ↾ dom 𝑅)) ∪ (𝑆(inr ↾ dom 𝑆))))
3611, 22, 34, 35syl21anc 1219 . 2 (𝜑 → Fun ((𝑅(inl ↾ dom 𝑅)) ∪ (𝑆(inr ↾ dom 𝑆))))
37 df-djud 7048 . . . . 5 (𝑅d 𝑆) = ((𝑅(inl ↾ dom 𝑅)) ∪ (𝑆(inr ↾ dom 𝑆)))
3837cnveqi 4762 . . . 4 (𝑅d 𝑆) = ((𝑅(inl ↾ dom 𝑅)) ∪ (𝑆(inr ↾ dom 𝑆)))
39 cnvun 4992 . . . 4 ((𝑅(inl ↾ dom 𝑅)) ∪ (𝑆(inr ↾ dom 𝑆))) = ((𝑅(inl ↾ dom 𝑅)) ∪ (𝑆(inr ↾ dom 𝑆)))
4038, 39eqtri 2178 . . 3 (𝑅d 𝑆) = ((𝑅(inl ↾ dom 𝑅)) ∪ (𝑆(inr ↾ dom 𝑆)))
4140funeqi 5192 . 2 (Fun (𝑅d 𝑆) ↔ Fun ((𝑅(inl ↾ dom 𝑅)) ∪ (𝑆(inr ↾ dom 𝑆))))
4236, 41sylibr 133 1 (𝜑 → Fun (𝑅d 𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1335  cun 3100  cin 3101  wss 3102  c0 3394  ccnv 4586  dom cdm 4587  ran crn 4588  cres 4589  ccom 4591  Fun wfun 5165  1-1wf1 5168  cdju 6982  inlcinl 6990  inrcinr 6991  d cdjud 7047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4083  ax-nul 4091  ax-pow 4136  ax-pr 4170  ax-un 4394
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-br 3967  df-opab 4027  df-mpt 4028  df-tr 4064  df-id 4254  df-iord 4327  df-on 4329  df-suc 4332  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-rn 4598  df-res 4599  df-iota 5136  df-fun 5173  df-fn 5174  df-f 5175  df-f1 5176  df-fo 5177  df-f1o 5178  df-fv 5179  df-1st 6089  df-2nd 6090  df-1o 6364  df-dju 6983  df-inl 6992  df-inr 6993  df-djud 7048
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator