ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-case GIF version

Definition df-case 7077
Description: The "case" construction: if 𝐹:𝐴𝑋 and 𝐺:𝐵𝑋 are functions, then case(𝐹, 𝐺):(𝐴𝐵)⟶𝑋 is the natural function obtained by a definition by cases, hence the name. It is the unique function whose existence is asserted by the universal property of disjoint unions updjud 7075. The definition is adapted to make sense also for binary relations (where the universal property also holds). (Contributed by MC and BJ, 10-Jul-2022.)
Assertion
Ref Expression
df-case case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))

Detailed syntax breakdown of Definition df-case
StepHypRef Expression
1 cR . . 3 class 𝑅
2 cS . . 3 class 𝑆
31, 2cdjucase 7076 . 2 class case(𝑅, 𝑆)
4 cinl 7038 . . . . 5 class inl
54ccnv 4622 . . . 4 class inl
61, 5ccom 4627 . . 3 class (𝑅inl)
7 cinr 7039 . . . . 5 class inr
87ccnv 4622 . . . 4 class inr
92, 8ccom 4627 . . 3 class (𝑆inr)
106, 9cun 3127 . 2 class ((𝑅inl) ∪ (𝑆inr))
113, 10wceq 1353 1 wff case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))
Colors of variables: wff set class
This definition is referenced by:  casefun  7078  casedm  7079  caserel  7080  caseinj  7082  caseinl  7084  caseinr  7085
  Copyright terms: Public domain W3C validator