ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-case GIF version

Definition df-case 7143
Description: The "case" construction: if 𝐹:𝐴𝑋 and 𝐺:𝐵𝑋 are functions, then case(𝐹, 𝐺):(𝐴𝐵)⟶𝑋 is the natural function obtained by a definition by cases, hence the name. It is the unique function whose existence is asserted by the universal property of disjoint unions updjud 7141. The definition is adapted to make sense also for binary relations (where the universal property also holds). (Contributed by MC and BJ, 10-Jul-2022.)
Assertion
Ref Expression
df-case case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))

Detailed syntax breakdown of Definition df-case
StepHypRef Expression
1 cR . . 3 class 𝑅
2 cS . . 3 class 𝑆
31, 2cdjucase 7142 . 2 class case(𝑅, 𝑆)
4 cinl 7104 . . . . 5 class inl
54ccnv 4658 . . . 4 class inl
61, 5ccom 4663 . . 3 class (𝑅inl)
7 cinr 7105 . . . . 5 class inr
87ccnv 4658 . . . 4 class inr
92, 8ccom 4663 . . 3 class (𝑆inr)
106, 9cun 3151 . 2 class ((𝑅inl) ∪ (𝑆inr))
113, 10wceq 1364 1 wff case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))
Colors of variables: wff set class
This definition is referenced by:  casefun  7144  casedm  7145  caserel  7146  caseinj  7148  caseinl  7150  caseinr  7151
  Copyright terms: Public domain W3C validator