ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-case GIF version

Definition df-case 7219
Description: The "case" construction: if 𝐹:𝐴𝑋 and 𝐺:𝐵𝑋 are functions, then case(𝐹, 𝐺):(𝐴𝐵)⟶𝑋 is the natural function obtained by a definition by cases, hence the name. It is the unique function whose existence is asserted by the universal property of disjoint unions updjud 7217. The definition is adapted to make sense also for binary relations (where the universal property also holds). (Contributed by MC and BJ, 10-Jul-2022.)
Assertion
Ref Expression
df-case case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))

Detailed syntax breakdown of Definition df-case
StepHypRef Expression
1 cR . . 3 class 𝑅
2 cS . . 3 class 𝑆
31, 2cdjucase 7218 . 2 class case(𝑅, 𝑆)
4 cinl 7180 . . . . 5 class inl
54ccnv 4695 . . . 4 class inl
61, 5ccom 4700 . . 3 class (𝑅inl)
7 cinr 7181 . . . . 5 class inr
87ccnv 4695 . . . 4 class inr
92, 8ccom 4700 . . 3 class (𝑆inr)
106, 9cun 3175 . 2 class ((𝑅inl) ∪ (𝑆inr))
113, 10wceq 1375 1 wff case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))
Colors of variables: wff set class
This definition is referenced by:  casefun  7220  casedm  7221  caserel  7222  caseinj  7224  caseinl  7226  caseinr  7227
  Copyright terms: Public domain W3C validator