![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-case | GIF version |
Description: The "case" construction: if 𝐹:𝐴⟶𝑋 and 𝐺:𝐵⟶𝑋 are functions, then case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)⟶𝑋 is the natural function obtained by a definition by cases, hence the name. It is the unique function whose existence is asserted by the universal property of disjoint unions updjud 7143. The definition is adapted to make sense also for binary relations (where the universal property also holds). (Contributed by MC and BJ, 10-Jul-2022.) |
Ref | Expression |
---|---|
df-case | ⊢ case(𝑅, 𝑆) = ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cR | . . 3 class 𝑅 | |
2 | cS | . . 3 class 𝑆 | |
3 | 1, 2 | cdjucase 7144 | . 2 class case(𝑅, 𝑆) |
4 | cinl 7106 | . . . . 5 class inl | |
5 | 4 | ccnv 4659 | . . . 4 class ◡inl |
6 | 1, 5 | ccom 4664 | . . 3 class (𝑅 ∘ ◡inl) |
7 | cinr 7107 | . . . . 5 class inr | |
8 | 7 | ccnv 4659 | . . . 4 class ◡inr |
9 | 2, 8 | ccom 4664 | . . 3 class (𝑆 ∘ ◡inr) |
10 | 6, 9 | cun 3152 | . 2 class ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
11 | 3, 10 | wceq 1364 | 1 wff case(𝑅, 𝑆) = ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
Colors of variables: wff set class |
This definition is referenced by: casefun 7146 casedm 7147 caserel 7148 caseinj 7150 caseinl 7152 caseinr 7153 |
Copyright terms: Public domain | W3C validator |