ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-case GIF version

Definition df-case 7061
Description: The "case" construction: if 𝐹:𝐴𝑋 and 𝐺:𝐵𝑋 are functions, then case(𝐹, 𝐺):(𝐴𝐵)⟶𝑋 is the natural function obtained by a definition by cases, hence the name. It is the unique function whose existence is asserted by the universal property of disjoint unions updjud 7059. The definition is adapted to make sense also for binary relations (where the universal property also holds). (Contributed by MC and BJ, 10-Jul-2022.)
Assertion
Ref Expression
df-case case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))

Detailed syntax breakdown of Definition df-case
StepHypRef Expression
1 cR . . 3 class 𝑅
2 cS . . 3 class 𝑆
31, 2cdjucase 7060 . 2 class case(𝑅, 𝑆)
4 cinl 7022 . . . . 5 class inl
54ccnv 4610 . . . 4 class inl
61, 5ccom 4615 . . 3 class (𝑅inl)
7 cinr 7023 . . . . 5 class inr
87ccnv 4610 . . . 4 class inr
92, 8ccom 4615 . . 3 class (𝑆inr)
106, 9cun 3119 . 2 class ((𝑅inl) ∪ (𝑆inr))
113, 10wceq 1348 1 wff case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))
Colors of variables: wff set class
This definition is referenced by:  casefun  7062  casedm  7063  caserel  7064  caseinj  7066  caseinl  7068  caseinr  7069
  Copyright terms: Public domain W3C validator