ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-case GIF version

Definition df-case 7193
Description: The "case" construction: if 𝐹:𝐴𝑋 and 𝐺:𝐵𝑋 are functions, then case(𝐹, 𝐺):(𝐴𝐵)⟶𝑋 is the natural function obtained by a definition by cases, hence the name. It is the unique function whose existence is asserted by the universal property of disjoint unions updjud 7191. The definition is adapted to make sense also for binary relations (where the universal property also holds). (Contributed by MC and BJ, 10-Jul-2022.)
Assertion
Ref Expression
df-case case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))

Detailed syntax breakdown of Definition df-case
StepHypRef Expression
1 cR . . 3 class 𝑅
2 cS . . 3 class 𝑆
31, 2cdjucase 7192 . 2 class case(𝑅, 𝑆)
4 cinl 7154 . . . . 5 class inl
54ccnv 4678 . . . 4 class inl
61, 5ccom 4683 . . 3 class (𝑅inl)
7 cinr 7155 . . . . 5 class inr
87ccnv 4678 . . . 4 class inr
92, 8ccom 4683 . . 3 class (𝑆inr)
106, 9cun 3165 . 2 class ((𝑅inl) ∪ (𝑆inr))
113, 10wceq 1373 1 wff case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))
Colors of variables: wff set class
This definition is referenced by:  casefun  7194  casedm  7195  caserel  7196  caseinj  7198  caseinl  7200  caseinr  7201
  Copyright terms: Public domain W3C validator