ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-case GIF version

Definition df-case 7059
Description: The "case" construction: if 𝐹:𝐴𝑋 and 𝐺:𝐵𝑋 are functions, then case(𝐹, 𝐺):(𝐴𝐵)⟶𝑋 is the natural function obtained by a definition by cases, hence the name. It is the unique function whose existence is asserted by the universal property of disjoint unions updjud 7057. The definition is adapted to make sense also for binary relations (where the universal property also holds). (Contributed by MC and BJ, 10-Jul-2022.)
Assertion
Ref Expression
df-case case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))

Detailed syntax breakdown of Definition df-case
StepHypRef Expression
1 cR . . 3 class 𝑅
2 cS . . 3 class 𝑆
31, 2cdjucase 7058 . 2 class case(𝑅, 𝑆)
4 cinl 7020 . . . . 5 class inl
54ccnv 4608 . . . 4 class inl
61, 5ccom 4613 . . 3 class (𝑅inl)
7 cinr 7021 . . . . 5 class inr
87ccnv 4608 . . . 4 class inr
92, 8ccom 4613 . . 3 class (𝑆inr)
106, 9cun 3119 . 2 class ((𝑅inl) ∪ (𝑆inr))
113, 10wceq 1348 1 wff case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))
Colors of variables: wff set class
This definition is referenced by:  casefun  7060  casedm  7061  caserel  7062  caseinj  7064  caseinl  7066  caseinr  7067
  Copyright terms: Public domain W3C validator