![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-case | GIF version |
Description: The "case" construction: if 𝐹:𝐴⟶𝑋 and 𝐺:𝐵⟶𝑋 are functions, then case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)⟶𝑋 is the natural function obtained by a definition by cases, hence the name. It is the unique function whose existence is asserted by the universal property of disjoint unions updjud 7075. The definition is adapted to make sense also for binary relations (where the universal property also holds). (Contributed by MC and BJ, 10-Jul-2022.) |
Ref | Expression |
---|---|
df-case | ⊢ case(𝑅, 𝑆) = ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cR | . . 3 class 𝑅 | |
2 | cS | . . 3 class 𝑆 | |
3 | 1, 2 | cdjucase 7076 | . 2 class case(𝑅, 𝑆) |
4 | cinl 7038 | . . . . 5 class inl | |
5 | 4 | ccnv 4622 | . . . 4 class ◡inl |
6 | 1, 5 | ccom 4627 | . . 3 class (𝑅 ∘ ◡inl) |
7 | cinr 7039 | . . . . 5 class inr | |
8 | 7 | ccnv 4622 | . . . 4 class ◡inr |
9 | 2, 8 | ccom 4627 | . . 3 class (𝑆 ∘ ◡inr) |
10 | 6, 9 | cun 3127 | . 2 class ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
11 | 3, 10 | wceq 1353 | 1 wff case(𝑅, 𝑆) = ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
Colors of variables: wff set class |
This definition is referenced by: casefun 7078 casedm 7079 caserel 7080 caseinj 7082 caseinl 7084 caseinr 7085 |
Copyright terms: Public domain | W3C validator |