![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-case | GIF version |
Description: The "case" construction: if 𝐹:𝐴⟶𝑋 and 𝐺:𝐵⟶𝑋 are functions, then case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)⟶𝑋 is the natural function obtained by a definition by cases, hence the name. It is the unique function whose existence is asserted by the universal property of disjoint unions updjud 7083. The definition is adapted to make sense also for binary relations (where the universal property also holds). (Contributed by MC and BJ, 10-Jul-2022.) |
Ref | Expression |
---|---|
df-case | ⊢ case(𝑅, 𝑆) = ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cR | . . 3 class 𝑅 | |
2 | cS | . . 3 class 𝑆 | |
3 | 1, 2 | cdjucase 7084 | . 2 class case(𝑅, 𝑆) |
4 | cinl 7046 | . . . . 5 class inl | |
5 | 4 | ccnv 4627 | . . . 4 class ◡inl |
6 | 1, 5 | ccom 4632 | . . 3 class (𝑅 ∘ ◡inl) |
7 | cinr 7047 | . . . . 5 class inr | |
8 | 7 | ccnv 4627 | . . . 4 class ◡inr |
9 | 2, 8 | ccom 4632 | . . 3 class (𝑆 ∘ ◡inr) |
10 | 6, 9 | cun 3129 | . 2 class ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
11 | 3, 10 | wceq 1353 | 1 wff case(𝑅, 𝑆) = ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
Colors of variables: wff set class |
This definition is referenced by: casefun 7086 casedm 7087 caserel 7088 caseinj 7090 caseinl 7092 caseinr 7093 |
Copyright terms: Public domain | W3C validator |