| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-case | GIF version | ||
| Description: The "case" construction: if 𝐹:𝐴⟶𝑋 and 𝐺:𝐵⟶𝑋 are functions, then case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)⟶𝑋 is the natural function obtained by a definition by cases, hence the name. It is the unique function whose existence is asserted by the universal property of disjoint unions updjud 7157. The definition is adapted to make sense also for binary relations (where the universal property also holds). (Contributed by MC and BJ, 10-Jul-2022.) |
| Ref | Expression |
|---|---|
| df-case | ⊢ case(𝑅, 𝑆) = ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cR | . . 3 class 𝑅 | |
| 2 | cS | . . 3 class 𝑆 | |
| 3 | 1, 2 | cdjucase 7158 | . 2 class case(𝑅, 𝑆) |
| 4 | cinl 7120 | . . . . 5 class inl | |
| 5 | 4 | ccnv 4663 | . . . 4 class ◡inl |
| 6 | 1, 5 | ccom 4668 | . . 3 class (𝑅 ∘ ◡inl) |
| 7 | cinr 7121 | . . . . 5 class inr | |
| 8 | 7 | ccnv 4663 | . . . 4 class ◡inr |
| 9 | 2, 8 | ccom 4668 | . . 3 class (𝑆 ∘ ◡inr) |
| 10 | 6, 9 | cun 3155 | . 2 class ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
| 11 | 3, 10 | wceq 1364 | 1 wff case(𝑅, 𝑆) = ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
| Colors of variables: wff set class |
| This definition is referenced by: casefun 7160 casedm 7161 caserel 7162 caseinj 7164 caseinl 7166 caseinr 7167 |
| Copyright terms: Public domain | W3C validator |