| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-case | GIF version | ||
| Description: The "case" construction: if 𝐹:𝐴⟶𝑋 and 𝐺:𝐵⟶𝑋 are functions, then case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)⟶𝑋 is the natural function obtained by a definition by cases, hence the name. It is the unique function whose existence is asserted by the universal property of disjoint unions updjud 7217. The definition is adapted to make sense also for binary relations (where the universal property also holds). (Contributed by MC and BJ, 10-Jul-2022.) |
| Ref | Expression |
|---|---|
| df-case | ⊢ case(𝑅, 𝑆) = ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cR | . . 3 class 𝑅 | |
| 2 | cS | . . 3 class 𝑆 | |
| 3 | 1, 2 | cdjucase 7218 | . 2 class case(𝑅, 𝑆) |
| 4 | cinl 7180 | . . . . 5 class inl | |
| 5 | 4 | ccnv 4695 | . . . 4 class ◡inl |
| 6 | 1, 5 | ccom 4700 | . . 3 class (𝑅 ∘ ◡inl) |
| 7 | cinr 7181 | . . . . 5 class inr | |
| 8 | 7 | ccnv 4695 | . . . 4 class ◡inr |
| 9 | 2, 8 | ccom 4700 | . . 3 class (𝑆 ∘ ◡inr) |
| 10 | 6, 9 | cun 3175 | . 2 class ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
| 11 | 3, 10 | wceq 1375 | 1 wff case(𝑅, 𝑆) = ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
| Colors of variables: wff set class |
| This definition is referenced by: casefun 7220 casedm 7221 caserel 7222 caseinj 7224 caseinl 7226 caseinr 7227 |
| Copyright terms: Public domain | W3C validator |