| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-case | GIF version | ||
| Description: The "case" construction: if 𝐹:𝐴⟶𝑋 and 𝐺:𝐵⟶𝑋 are functions, then case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)⟶𝑋 is the natural function obtained by a definition by cases, hence the name. It is the unique function whose existence is asserted by the universal property of disjoint unions updjud 7191. The definition is adapted to make sense also for binary relations (where the universal property also holds). (Contributed by MC and BJ, 10-Jul-2022.) |
| Ref | Expression |
|---|---|
| df-case | ⊢ case(𝑅, 𝑆) = ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cR | . . 3 class 𝑅 | |
| 2 | cS | . . 3 class 𝑆 | |
| 3 | 1, 2 | cdjucase 7192 | . 2 class case(𝑅, 𝑆) |
| 4 | cinl 7154 | . . . . 5 class inl | |
| 5 | 4 | ccnv 4678 | . . . 4 class ◡inl |
| 6 | 1, 5 | ccom 4683 | . . 3 class (𝑅 ∘ ◡inl) |
| 7 | cinr 7155 | . . . . 5 class inr | |
| 8 | 7 | ccnv 4678 | . . . 4 class ◡inr |
| 9 | 2, 8 | ccom 4683 | . . 3 class (𝑆 ∘ ◡inr) |
| 10 | 6, 9 | cun 3165 | . 2 class ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
| 11 | 3, 10 | wceq 1373 | 1 wff case(𝑅, 𝑆) = ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
| Colors of variables: wff set class |
| This definition is referenced by: casefun 7194 casedm 7195 caserel 7196 caseinj 7198 caseinl 7200 caseinr 7201 |
| Copyright terms: Public domain | W3C validator |