| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-case | GIF version | ||
| Description: The "case" construction: if 𝐹:𝐴⟶𝑋 and 𝐺:𝐵⟶𝑋 are functions, then case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)⟶𝑋 is the natural function obtained by a definition by cases, hence the name. It is the unique function whose existence is asserted by the universal property of disjoint unions updjud 7257. The definition is adapted to make sense also for binary relations (where the universal property also holds). (Contributed by MC and BJ, 10-Jul-2022.) |
| Ref | Expression |
|---|---|
| df-case | ⊢ case(𝑅, 𝑆) = ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cR | . . 3 class 𝑅 | |
| 2 | cS | . . 3 class 𝑆 | |
| 3 | 1, 2 | cdjucase 7258 | . 2 class case(𝑅, 𝑆) |
| 4 | cinl 7220 | . . . . 5 class inl | |
| 5 | 4 | ccnv 4718 | . . . 4 class ◡inl |
| 6 | 1, 5 | ccom 4723 | . . 3 class (𝑅 ∘ ◡inl) |
| 7 | cinr 7221 | . . . . 5 class inr | |
| 8 | 7 | ccnv 4718 | . . . 4 class ◡inr |
| 9 | 2, 8 | ccom 4723 | . . 3 class (𝑆 ∘ ◡inr) |
| 10 | 6, 9 | cun 3195 | . 2 class ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
| 11 | 3, 10 | wceq 1395 | 1 wff case(𝑅, 𝑆) = ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
| Colors of variables: wff set class |
| This definition is referenced by: casefun 7260 casedm 7261 caserel 7262 caseinj 7264 caseinl 7266 caseinr 7267 |
| Copyright terms: Public domain | W3C validator |