| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df-case | GIF version | ||
| Description: The "case" construction: if 𝐹:𝐴⟶𝑋 and 𝐺:𝐵⟶𝑋 are functions, then case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)⟶𝑋 is the natural function obtained by a definition by cases, hence the name. It is the unique function whose existence is asserted by the universal property of disjoint unions updjud 7148. The definition is adapted to make sense also for binary relations (where the universal property also holds). (Contributed by MC and BJ, 10-Jul-2022.) | 
| Ref | Expression | 
|---|---|
| df-case | ⊢ case(𝑅, 𝑆) = ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cR | . . 3 class 𝑅 | |
| 2 | cS | . . 3 class 𝑆 | |
| 3 | 1, 2 | cdjucase 7149 | . 2 class case(𝑅, 𝑆) | 
| 4 | cinl 7111 | . . . . 5 class inl | |
| 5 | 4 | ccnv 4662 | . . . 4 class ◡inl | 
| 6 | 1, 5 | ccom 4667 | . . 3 class (𝑅 ∘ ◡inl) | 
| 7 | cinr 7112 | . . . . 5 class inr | |
| 8 | 7 | ccnv 4662 | . . . 4 class ◡inr | 
| 9 | 2, 8 | ccom 4667 | . . 3 class (𝑆 ∘ ◡inr) | 
| 10 | 6, 9 | cun 3155 | . 2 class ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) | 
| 11 | 3, 10 | wceq 1364 | 1 wff case(𝑅, 𝑆) = ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) | 
| Colors of variables: wff set class | 
| This definition is referenced by: casefun 7151 casedm 7152 caserel 7153 caseinj 7155 caseinl 7157 caseinr 7158 | 
| Copyright terms: Public domain | W3C validator |