Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-case | GIF version |
Description: The "case" construction: if 𝐹:𝐴⟶𝑋 and 𝐺:𝐵⟶𝑋 are functions, then case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)⟶𝑋 is the natural function obtained by a definition by cases, hence the name. It is the unique function whose existence is asserted by the universal property of disjoint unions updjud 7057. The definition is adapted to make sense also for binary relations (where the universal property also holds). (Contributed by MC and BJ, 10-Jul-2022.) |
Ref | Expression |
---|---|
df-case | ⊢ case(𝑅, 𝑆) = ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cR | . . 3 class 𝑅 | |
2 | cS | . . 3 class 𝑆 | |
3 | 1, 2 | cdjucase 7058 | . 2 class case(𝑅, 𝑆) |
4 | cinl 7020 | . . . . 5 class inl | |
5 | 4 | ccnv 4608 | . . . 4 class ◡inl |
6 | 1, 5 | ccom 4613 | . . 3 class (𝑅 ∘ ◡inl) |
7 | cinr 7021 | . . . . 5 class inr | |
8 | 7 | ccnv 4608 | . . . 4 class ◡inr |
9 | 2, 8 | ccom 4613 | . . 3 class (𝑆 ∘ ◡inr) |
10 | 6, 9 | cun 3119 | . 2 class ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
11 | 3, 10 | wceq 1348 | 1 wff case(𝑅, 𝑆) = ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
Colors of variables: wff set class |
This definition is referenced by: casefun 7060 casedm 7061 caserel 7062 caseinj 7064 caseinl 7066 caseinr 7067 |
Copyright terms: Public domain | W3C validator |