ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-case GIF version

Definition df-case 7259
Description: The "case" construction: if 𝐹:𝐴𝑋 and 𝐺:𝐵𝑋 are functions, then case(𝐹, 𝐺):(𝐴𝐵)⟶𝑋 is the natural function obtained by a definition by cases, hence the name. It is the unique function whose existence is asserted by the universal property of disjoint unions updjud 7257. The definition is adapted to make sense also for binary relations (where the universal property also holds). (Contributed by MC and BJ, 10-Jul-2022.)
Assertion
Ref Expression
df-case case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))

Detailed syntax breakdown of Definition df-case
StepHypRef Expression
1 cR . . 3 class 𝑅
2 cS . . 3 class 𝑆
31, 2cdjucase 7258 . 2 class case(𝑅, 𝑆)
4 cinl 7220 . . . . 5 class inl
54ccnv 4718 . . . 4 class inl
61, 5ccom 4723 . . 3 class (𝑅inl)
7 cinr 7221 . . . . 5 class inr
87ccnv 4718 . . . 4 class inr
92, 8ccom 4723 . . 3 class (𝑆inr)
106, 9cun 3195 . 2 class ((𝑅inl) ∪ (𝑆inr))
113, 10wceq 1395 1 wff case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))
Colors of variables: wff set class
This definition is referenced by:  casefun  7260  casedm  7261  caserel  7262  caseinj  7264  caseinl  7266  caseinr  7267
  Copyright terms: Public domain W3C validator