Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-case | GIF version |
Description: The "case" construction: if 𝐹:𝐴⟶𝑋 and 𝐺:𝐵⟶𝑋 are functions, then case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)⟶𝑋 is the natural function obtained by a definition by cases, hence the name. It is the unique function whose existence is asserted by the universal property of disjoint unions updjud 7047. The definition is adapted to make sense also for binary relations (where the universal property also holds). (Contributed by MC and BJ, 10-Jul-2022.) |
Ref | Expression |
---|---|
df-case | ⊢ case(𝑅, 𝑆) = ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cR | . . 3 class 𝑅 | |
2 | cS | . . 3 class 𝑆 | |
3 | 1, 2 | cdjucase 7048 | . 2 class case(𝑅, 𝑆) |
4 | cinl 7010 | . . . . 5 class inl | |
5 | 4 | ccnv 4603 | . . . 4 class ◡inl |
6 | 1, 5 | ccom 4608 | . . 3 class (𝑅 ∘ ◡inl) |
7 | cinr 7011 | . . . . 5 class inr | |
8 | 7 | ccnv 4603 | . . . 4 class ◡inr |
9 | 2, 8 | ccom 4608 | . . 3 class (𝑆 ∘ ◡inr) |
10 | 6, 9 | cun 3114 | . 2 class ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
11 | 3, 10 | wceq 1343 | 1 wff case(𝑅, 𝑆) = ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
Colors of variables: wff set class |
This definition is referenced by: casefun 7050 casedm 7051 caserel 7052 caseinj 7054 caseinl 7056 caseinr 7057 |
Copyright terms: Public domain | W3C validator |