![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-case | GIF version |
Description: The "case" construction: if 𝐹:𝐴⟶𝑋 and 𝐺:𝐵⟶𝑋 are functions, then case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)⟶𝑋 is the natural function obtained by a definition by cases, hence the name. It is the unique function whose existence is asserted by the universal property of disjoint unions updjud 7141. The definition is adapted to make sense also for binary relations (where the universal property also holds). (Contributed by MC and BJ, 10-Jul-2022.) |
Ref | Expression |
---|---|
df-case | ⊢ case(𝑅, 𝑆) = ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cR | . . 3 class 𝑅 | |
2 | cS | . . 3 class 𝑆 | |
3 | 1, 2 | cdjucase 7142 | . 2 class case(𝑅, 𝑆) |
4 | cinl 7104 | . . . . 5 class inl | |
5 | 4 | ccnv 4658 | . . . 4 class ◡inl |
6 | 1, 5 | ccom 4663 | . . 3 class (𝑅 ∘ ◡inl) |
7 | cinr 7105 | . . . . 5 class inr | |
8 | 7 | ccnv 4658 | . . . 4 class ◡inr |
9 | 2, 8 | ccom 4663 | . . 3 class (𝑆 ∘ ◡inr) |
10 | 6, 9 | cun 3151 | . 2 class ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
11 | 3, 10 | wceq 1364 | 1 wff case(𝑅, 𝑆) = ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
Colors of variables: wff set class |
This definition is referenced by: casefun 7144 casedm 7145 caserel 7146 caseinj 7148 caseinl 7150 caseinr 7151 |
Copyright terms: Public domain | W3C validator |