ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-case GIF version

Definition df-case 7150
Description: The "case" construction: if 𝐹:𝐴𝑋 and 𝐺:𝐵𝑋 are functions, then case(𝐹, 𝐺):(𝐴𝐵)⟶𝑋 is the natural function obtained by a definition by cases, hence the name. It is the unique function whose existence is asserted by the universal property of disjoint unions updjud 7148. The definition is adapted to make sense also for binary relations (where the universal property also holds). (Contributed by MC and BJ, 10-Jul-2022.)
Assertion
Ref Expression
df-case case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))

Detailed syntax breakdown of Definition df-case
StepHypRef Expression
1 cR . . 3 class 𝑅
2 cS . . 3 class 𝑆
31, 2cdjucase 7149 . 2 class case(𝑅, 𝑆)
4 cinl 7111 . . . . 5 class inl
54ccnv 4662 . . . 4 class inl
61, 5ccom 4667 . . 3 class (𝑅inl)
7 cinr 7112 . . . . 5 class inr
87ccnv 4662 . . . 4 class inr
92, 8ccom 4667 . . 3 class (𝑆inr)
106, 9cun 3155 . 2 class ((𝑅inl) ∪ (𝑆inr))
113, 10wceq 1364 1 wff case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))
Colors of variables: wff set class
This definition is referenced by:  casefun  7151  casedm  7152  caserel  7153  caseinj  7155  caseinl  7157  caseinr  7158
  Copyright terms: Public domain W3C validator