ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-case GIF version

Definition df-case 7085
Description: The "case" construction: if 𝐹:𝐴𝑋 and 𝐺:𝐵𝑋 are functions, then case(𝐹, 𝐺):(𝐴𝐵)⟶𝑋 is the natural function obtained by a definition by cases, hence the name. It is the unique function whose existence is asserted by the universal property of disjoint unions updjud 7083. The definition is adapted to make sense also for binary relations (where the universal property also holds). (Contributed by MC and BJ, 10-Jul-2022.)
Assertion
Ref Expression
df-case case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))

Detailed syntax breakdown of Definition df-case
StepHypRef Expression
1 cR . . 3 class 𝑅
2 cS . . 3 class 𝑆
31, 2cdjucase 7084 . 2 class case(𝑅, 𝑆)
4 cinl 7046 . . . . 5 class inl
54ccnv 4627 . . . 4 class inl
61, 5ccom 4632 . . 3 class (𝑅inl)
7 cinr 7047 . . . . 5 class inr
87ccnv 4627 . . . 4 class inr
92, 8ccom 4632 . . 3 class (𝑆inr)
106, 9cun 3129 . 2 class ((𝑅inl) ∪ (𝑆inr))
113, 10wceq 1353 1 wff case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))
Colors of variables: wff set class
This definition is referenced by:  casefun  7086  casedm  7087  caserel  7088  caseinj  7090  caseinl  7092  caseinr  7093
  Copyright terms: Public domain W3C validator