ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-case GIF version

Definition df-case 7049
Description: The "case" construction: if 𝐹:𝐴𝑋 and 𝐺:𝐵𝑋 are functions, then case(𝐹, 𝐺):(𝐴𝐵)⟶𝑋 is the natural function obtained by a definition by cases, hence the name. It is the unique function whose existence is asserted by the universal property of disjoint unions updjud 7047. The definition is adapted to make sense also for binary relations (where the universal property also holds). (Contributed by MC and BJ, 10-Jul-2022.)
Assertion
Ref Expression
df-case case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))

Detailed syntax breakdown of Definition df-case
StepHypRef Expression
1 cR . . 3 class 𝑅
2 cS . . 3 class 𝑆
31, 2cdjucase 7048 . 2 class case(𝑅, 𝑆)
4 cinl 7010 . . . . 5 class inl
54ccnv 4603 . . . 4 class inl
61, 5ccom 4608 . . 3 class (𝑅inl)
7 cinr 7011 . . . . 5 class inr
87ccnv 4603 . . . 4 class inr
92, 8ccom 4608 . . 3 class (𝑆inr)
106, 9cun 3114 . 2 class ((𝑅inl) ∪ (𝑆inr))
113, 10wceq 1343 1 wff case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))
Colors of variables: wff set class
This definition is referenced by:  casefun  7050  casedm  7051  caserel  7052  caseinj  7054  caseinl  7056  caseinr  7057
  Copyright terms: Public domain W3C validator