ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-case GIF version

Definition df-case 7159
Description: The "case" construction: if 𝐹:𝐴𝑋 and 𝐺:𝐵𝑋 are functions, then case(𝐹, 𝐺):(𝐴𝐵)⟶𝑋 is the natural function obtained by a definition by cases, hence the name. It is the unique function whose existence is asserted by the universal property of disjoint unions updjud 7157. The definition is adapted to make sense also for binary relations (where the universal property also holds). (Contributed by MC and BJ, 10-Jul-2022.)
Assertion
Ref Expression
df-case case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))

Detailed syntax breakdown of Definition df-case
StepHypRef Expression
1 cR . . 3 class 𝑅
2 cS . . 3 class 𝑆
31, 2cdjucase 7158 . 2 class case(𝑅, 𝑆)
4 cinl 7120 . . . . 5 class inl
54ccnv 4663 . . . 4 class inl
61, 5ccom 4668 . . 3 class (𝑅inl)
7 cinr 7121 . . . . 5 class inr
87ccnv 4663 . . . 4 class inr
92, 8ccom 4668 . . 3 class (𝑆inr)
106, 9cun 3155 . 2 class ((𝑅inl) ∪ (𝑆inr))
113, 10wceq 1364 1 wff case(𝑅, 𝑆) = ((𝑅inl) ∪ (𝑆inr))
Colors of variables: wff set class
This definition is referenced by:  casefun  7160  casedm  7161  caserel  7162  caseinj  7164  caseinl  7166  caseinr  7167
  Copyright terms: Public domain W3C validator