Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-case | GIF version |
Description: The "case" construction: if 𝐹:𝐴⟶𝑋 and 𝐺:𝐵⟶𝑋 are functions, then case(𝐹, 𝐺):(𝐴 ⊔ 𝐵)⟶𝑋 is the natural function obtained by a definition by cases, hence the name. It is the unique function whose existence is asserted by the universal property of disjoint unions updjud 7059. The definition is adapted to make sense also for binary relations (where the universal property also holds). (Contributed by MC and BJ, 10-Jul-2022.) |
Ref | Expression |
---|---|
df-case | ⊢ case(𝑅, 𝑆) = ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cR | . . 3 class 𝑅 | |
2 | cS | . . 3 class 𝑆 | |
3 | 1, 2 | cdjucase 7060 | . 2 class case(𝑅, 𝑆) |
4 | cinl 7022 | . . . . 5 class inl | |
5 | 4 | ccnv 4610 | . . . 4 class ◡inl |
6 | 1, 5 | ccom 4615 | . . 3 class (𝑅 ∘ ◡inl) |
7 | cinr 7023 | . . . . 5 class inr | |
8 | 7 | ccnv 4610 | . . . 4 class ◡inr |
9 | 2, 8 | ccom 4615 | . . 3 class (𝑆 ∘ ◡inr) |
10 | 6, 9 | cun 3119 | . 2 class ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
11 | 3, 10 | wceq 1348 | 1 wff case(𝑅, 𝑆) = ((𝑅 ∘ ◡inl) ∪ (𝑆 ∘ ◡inr)) |
Colors of variables: wff set class |
This definition is referenced by: casefun 7062 casedm 7063 caserel 7064 caseinj 7066 caseinl 7068 caseinr 7069 |
Copyright terms: Public domain | W3C validator |