ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djufun GIF version

Theorem djufun 7069
Description: The "domain-disjoint-union" of two functions is a function. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
djufun.f (𝜑 → Fun 𝐹)
djufun.g (𝜑 → Fun 𝐺)
Assertion
Ref Expression
djufun (𝜑 → Fun (𝐹d 𝐺))

Proof of Theorem djufun
StepHypRef Expression
1 djufun.f . . . 4 (𝜑 → Fun 𝐹)
2 inlresf1 7026 . . . . 5 (inl ↾ dom 𝐹):dom 𝐹1-1→(dom 𝐹 ⊔ dom 𝐺)
3 df-f1 5193 . . . . . 6 ((inl ↾ dom 𝐹):dom 𝐹1-1→(dom 𝐹 ⊔ dom 𝐺) ↔ ((inl ↾ dom 𝐹):dom 𝐹⟶(dom 𝐹 ⊔ dom 𝐺) ∧ Fun (inl ↾ dom 𝐹)))
43simprbi 273 . . . . 5 ((inl ↾ dom 𝐹):dom 𝐹1-1→(dom 𝐹 ⊔ dom 𝐺) → Fun (inl ↾ dom 𝐹))
52, 4mp1i 10 . . . 4 (𝜑 → Fun (inl ↾ dom 𝐹))
6 funco 5228 . . . 4 ((Fun 𝐹 ∧ Fun (inl ↾ dom 𝐹)) → Fun (𝐹(inl ↾ dom 𝐹)))
71, 5, 6syl2anc 409 . . 3 (𝜑 → Fun (𝐹(inl ↾ dom 𝐹)))
8 djufun.g . . . 4 (𝜑 → Fun 𝐺)
9 inrresf1 7027 . . . . 5 (inr ↾ dom 𝐺):dom 𝐺1-1→(dom 𝐹 ⊔ dom 𝐺)
10 df-f1 5193 . . . . . 6 ((inr ↾ dom 𝐺):dom 𝐺1-1→(dom 𝐹 ⊔ dom 𝐺) ↔ ((inr ↾ dom 𝐺):dom 𝐺⟶(dom 𝐹 ⊔ dom 𝐺) ∧ Fun (inr ↾ dom 𝐺)))
1110simprbi 273 . . . . 5 ((inr ↾ dom 𝐺):dom 𝐺1-1→(dom 𝐹 ⊔ dom 𝐺) → Fun (inr ↾ dom 𝐺))
129, 11mp1i 10 . . . 4 (𝜑 → Fun (inr ↾ dom 𝐺))
13 funco 5228 . . . 4 ((Fun 𝐺 ∧ Fun (inr ↾ dom 𝐺)) → Fun (𝐺(inr ↾ dom 𝐺)))
148, 12, 13syl2anc 409 . . 3 (𝜑 → Fun (𝐺(inr ↾ dom 𝐺)))
15 dmcoss 4873 . . . . . . 7 dom (𝐹(inl ↾ dom 𝐹)) ⊆ dom (inl ↾ dom 𝐹)
16 df-rn 4615 . . . . . . 7 ran (inl ↾ dom 𝐹) = dom (inl ↾ dom 𝐹)
1715, 16sseqtrri 3177 . . . . . 6 dom (𝐹(inl ↾ dom 𝐹)) ⊆ ran (inl ↾ dom 𝐹)
18 dmcoss 4873 . . . . . . 7 dom (𝐺(inr ↾ dom 𝐺)) ⊆ dom (inr ↾ dom 𝐺)
19 df-rn 4615 . . . . . . 7 ran (inr ↾ dom 𝐺) = dom (inr ↾ dom 𝐺)
2018, 19sseqtrri 3177 . . . . . 6 dom (𝐺(inr ↾ dom 𝐺)) ⊆ ran (inr ↾ dom 𝐺)
21 ss2in 3350 . . . . . 6 ((dom (𝐹(inl ↾ dom 𝐹)) ⊆ ran (inl ↾ dom 𝐹) ∧ dom (𝐺(inr ↾ dom 𝐺)) ⊆ ran (inr ↾ dom 𝐺)) → (dom (𝐹(inl ↾ dom 𝐹)) ∩ dom (𝐺(inr ↾ dom 𝐺))) ⊆ (ran (inl ↾ dom 𝐹) ∩ ran (inr ↾ dom 𝐺)))
2217, 20, 21mp2an 423 . . . . 5 (dom (𝐹(inl ↾ dom 𝐹)) ∩ dom (𝐺(inr ↾ dom 𝐺))) ⊆ (ran (inl ↾ dom 𝐹) ∩ ran (inr ↾ dom 𝐺))
23 djuinr 7028 . . . . . 6 (ran (inl ↾ dom 𝐹) ∩ ran (inr ↾ dom 𝐺)) = ∅
2423a1i 9 . . . . 5 (𝜑 → (ran (inl ↾ dom 𝐹) ∩ ran (inr ↾ dom 𝐺)) = ∅)
2522, 24sseqtrid 3192 . . . 4 (𝜑 → (dom (𝐹(inl ↾ dom 𝐹)) ∩ dom (𝐺(inr ↾ dom 𝐺))) ⊆ ∅)
26 ss0 3449 . . . 4 ((dom (𝐹(inl ↾ dom 𝐹)) ∩ dom (𝐺(inr ↾ dom 𝐺))) ⊆ ∅ → (dom (𝐹(inl ↾ dom 𝐹)) ∩ dom (𝐺(inr ↾ dom 𝐺))) = ∅)
2725, 26syl 14 . . 3 (𝜑 → (dom (𝐹(inl ↾ dom 𝐹)) ∩ dom (𝐺(inr ↾ dom 𝐺))) = ∅)
28 funun 5232 . . 3 (((Fun (𝐹(inl ↾ dom 𝐹)) ∧ Fun (𝐺(inr ↾ dom 𝐺))) ∧ (dom (𝐹(inl ↾ dom 𝐹)) ∩ dom (𝐺(inr ↾ dom 𝐺))) = ∅) → Fun ((𝐹(inl ↾ dom 𝐹)) ∪ (𝐺(inr ↾ dom 𝐺))))
297, 14, 27, 28syl21anc 1227 . 2 (𝜑 → Fun ((𝐹(inl ↾ dom 𝐹)) ∪ (𝐺(inr ↾ dom 𝐺))))
30 df-djud 7068 . . 3 (𝐹d 𝐺) = ((𝐹(inl ↾ dom 𝐹)) ∪ (𝐺(inr ↾ dom 𝐺)))
3130funeqi 5209 . 2 (Fun (𝐹d 𝐺) ↔ Fun ((𝐹(inl ↾ dom 𝐹)) ∪ (𝐺(inr ↾ dom 𝐺))))
3229, 31sylibr 133 1 (𝜑 → Fun (𝐹d 𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  cun 3114  cin 3115  wss 3116  c0 3409  ccnv 4603  dom cdm 4604  ran crn 4605  cres 4606  ccom 4608  Fun wfun 5182  wf 5184  1-1wf1 5185  cdju 7002  inlcinl 7010  inrcinr 7011  d cdjud 7067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109  df-1o 6384  df-dju 7003  df-inl 7012  df-inr 7013  df-djud 7068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator