ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djufun GIF version

Theorem djufun 7188
Description: The "domain-disjoint-union" of two functions is a function. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
djufun.f (𝜑 → Fun 𝐹)
djufun.g (𝜑 → Fun 𝐺)
Assertion
Ref Expression
djufun (𝜑 → Fun (𝐹d 𝐺))

Proof of Theorem djufun
StepHypRef Expression
1 djufun.f . . . 4 (𝜑 → Fun 𝐹)
2 inlresf1 7145 . . . . 5 (inl ↾ dom 𝐹):dom 𝐹1-1→(dom 𝐹 ⊔ dom 𝐺)
3 df-f1 5273 . . . . . 6 ((inl ↾ dom 𝐹):dom 𝐹1-1→(dom 𝐹 ⊔ dom 𝐺) ↔ ((inl ↾ dom 𝐹):dom 𝐹⟶(dom 𝐹 ⊔ dom 𝐺) ∧ Fun (inl ↾ dom 𝐹)))
43simprbi 275 . . . . 5 ((inl ↾ dom 𝐹):dom 𝐹1-1→(dom 𝐹 ⊔ dom 𝐺) → Fun (inl ↾ dom 𝐹))
52, 4mp1i 10 . . . 4 (𝜑 → Fun (inl ↾ dom 𝐹))
6 funco 5308 . . . 4 ((Fun 𝐹 ∧ Fun (inl ↾ dom 𝐹)) → Fun (𝐹(inl ↾ dom 𝐹)))
71, 5, 6syl2anc 411 . . 3 (𝜑 → Fun (𝐹(inl ↾ dom 𝐹)))
8 djufun.g . . . 4 (𝜑 → Fun 𝐺)
9 inrresf1 7146 . . . . 5 (inr ↾ dom 𝐺):dom 𝐺1-1→(dom 𝐹 ⊔ dom 𝐺)
10 df-f1 5273 . . . . . 6 ((inr ↾ dom 𝐺):dom 𝐺1-1→(dom 𝐹 ⊔ dom 𝐺) ↔ ((inr ↾ dom 𝐺):dom 𝐺⟶(dom 𝐹 ⊔ dom 𝐺) ∧ Fun (inr ↾ dom 𝐺)))
1110simprbi 275 . . . . 5 ((inr ↾ dom 𝐺):dom 𝐺1-1→(dom 𝐹 ⊔ dom 𝐺) → Fun (inr ↾ dom 𝐺))
129, 11mp1i 10 . . . 4 (𝜑 → Fun (inr ↾ dom 𝐺))
13 funco 5308 . . . 4 ((Fun 𝐺 ∧ Fun (inr ↾ dom 𝐺)) → Fun (𝐺(inr ↾ dom 𝐺)))
148, 12, 13syl2anc 411 . . 3 (𝜑 → Fun (𝐺(inr ↾ dom 𝐺)))
15 dmcoss 4945 . . . . . . 7 dom (𝐹(inl ↾ dom 𝐹)) ⊆ dom (inl ↾ dom 𝐹)
16 df-rn 4684 . . . . . . 7 ran (inl ↾ dom 𝐹) = dom (inl ↾ dom 𝐹)
1715, 16sseqtrri 3227 . . . . . 6 dom (𝐹(inl ↾ dom 𝐹)) ⊆ ran (inl ↾ dom 𝐹)
18 dmcoss 4945 . . . . . . 7 dom (𝐺(inr ↾ dom 𝐺)) ⊆ dom (inr ↾ dom 𝐺)
19 df-rn 4684 . . . . . . 7 ran (inr ↾ dom 𝐺) = dom (inr ↾ dom 𝐺)
2018, 19sseqtrri 3227 . . . . . 6 dom (𝐺(inr ↾ dom 𝐺)) ⊆ ran (inr ↾ dom 𝐺)
21 ss2in 3400 . . . . . 6 ((dom (𝐹(inl ↾ dom 𝐹)) ⊆ ran (inl ↾ dom 𝐹) ∧ dom (𝐺(inr ↾ dom 𝐺)) ⊆ ran (inr ↾ dom 𝐺)) → (dom (𝐹(inl ↾ dom 𝐹)) ∩ dom (𝐺(inr ↾ dom 𝐺))) ⊆ (ran (inl ↾ dom 𝐹) ∩ ran (inr ↾ dom 𝐺)))
2217, 20, 21mp2an 426 . . . . 5 (dom (𝐹(inl ↾ dom 𝐹)) ∩ dom (𝐺(inr ↾ dom 𝐺))) ⊆ (ran (inl ↾ dom 𝐹) ∩ ran (inr ↾ dom 𝐺))
23 djuinr 7147 . . . . . 6 (ran (inl ↾ dom 𝐹) ∩ ran (inr ↾ dom 𝐺)) = ∅
2423a1i 9 . . . . 5 (𝜑 → (ran (inl ↾ dom 𝐹) ∩ ran (inr ↾ dom 𝐺)) = ∅)
2522, 24sseqtrid 3242 . . . 4 (𝜑 → (dom (𝐹(inl ↾ dom 𝐹)) ∩ dom (𝐺(inr ↾ dom 𝐺))) ⊆ ∅)
26 ss0 3500 . . . 4 ((dom (𝐹(inl ↾ dom 𝐹)) ∩ dom (𝐺(inr ↾ dom 𝐺))) ⊆ ∅ → (dom (𝐹(inl ↾ dom 𝐹)) ∩ dom (𝐺(inr ↾ dom 𝐺))) = ∅)
2725, 26syl 14 . . 3 (𝜑 → (dom (𝐹(inl ↾ dom 𝐹)) ∩ dom (𝐺(inr ↾ dom 𝐺))) = ∅)
28 funun 5312 . . 3 (((Fun (𝐹(inl ↾ dom 𝐹)) ∧ Fun (𝐺(inr ↾ dom 𝐺))) ∧ (dom (𝐹(inl ↾ dom 𝐹)) ∩ dom (𝐺(inr ↾ dom 𝐺))) = ∅) → Fun ((𝐹(inl ↾ dom 𝐹)) ∪ (𝐺(inr ↾ dom 𝐺))))
297, 14, 27, 28syl21anc 1248 . 2 (𝜑 → Fun ((𝐹(inl ↾ dom 𝐹)) ∪ (𝐺(inr ↾ dom 𝐺))))
30 df-djud 7187 . . 3 (𝐹d 𝐺) = ((𝐹(inl ↾ dom 𝐹)) ∪ (𝐺(inr ↾ dom 𝐺)))
3130funeqi 5289 . 2 (Fun (𝐹d 𝐺) ↔ Fun ((𝐹(inl ↾ dom 𝐹)) ∪ (𝐺(inr ↾ dom 𝐺))))
3229, 31sylibr 134 1 (𝜑 → Fun (𝐹d 𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  cun 3163  cin 3164  wss 3165  c0 3459  ccnv 4672  dom cdm 4673  ran crn 4674  cres 4675  ccom 4677  Fun wfun 5262  wf 5264  1-1wf1 5265  cdju 7121  inlcinl 7129  inrcinr 7130  d cdjud 7186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-iord 4411  df-on 4413  df-suc 4416  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-1st 6216  df-2nd 6217  df-1o 6492  df-dju 7122  df-inl 7131  df-inr 7132  df-djud 7187
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator