ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djufun GIF version

Theorem djufun 7165
Description: The "domain-disjoint-union" of two functions is a function. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
djufun.f (𝜑 → Fun 𝐹)
djufun.g (𝜑 → Fun 𝐺)
Assertion
Ref Expression
djufun (𝜑 → Fun (𝐹d 𝐺))

Proof of Theorem djufun
StepHypRef Expression
1 djufun.f . . . 4 (𝜑 → Fun 𝐹)
2 inlresf1 7122 . . . . 5 (inl ↾ dom 𝐹):dom 𝐹1-1→(dom 𝐹 ⊔ dom 𝐺)
3 df-f1 5260 . . . . . 6 ((inl ↾ dom 𝐹):dom 𝐹1-1→(dom 𝐹 ⊔ dom 𝐺) ↔ ((inl ↾ dom 𝐹):dom 𝐹⟶(dom 𝐹 ⊔ dom 𝐺) ∧ Fun (inl ↾ dom 𝐹)))
43simprbi 275 . . . . 5 ((inl ↾ dom 𝐹):dom 𝐹1-1→(dom 𝐹 ⊔ dom 𝐺) → Fun (inl ↾ dom 𝐹))
52, 4mp1i 10 . . . 4 (𝜑 → Fun (inl ↾ dom 𝐹))
6 funco 5295 . . . 4 ((Fun 𝐹 ∧ Fun (inl ↾ dom 𝐹)) → Fun (𝐹(inl ↾ dom 𝐹)))
71, 5, 6syl2anc 411 . . 3 (𝜑 → Fun (𝐹(inl ↾ dom 𝐹)))
8 djufun.g . . . 4 (𝜑 → Fun 𝐺)
9 inrresf1 7123 . . . . 5 (inr ↾ dom 𝐺):dom 𝐺1-1→(dom 𝐹 ⊔ dom 𝐺)
10 df-f1 5260 . . . . . 6 ((inr ↾ dom 𝐺):dom 𝐺1-1→(dom 𝐹 ⊔ dom 𝐺) ↔ ((inr ↾ dom 𝐺):dom 𝐺⟶(dom 𝐹 ⊔ dom 𝐺) ∧ Fun (inr ↾ dom 𝐺)))
1110simprbi 275 . . . . 5 ((inr ↾ dom 𝐺):dom 𝐺1-1→(dom 𝐹 ⊔ dom 𝐺) → Fun (inr ↾ dom 𝐺))
129, 11mp1i 10 . . . 4 (𝜑 → Fun (inr ↾ dom 𝐺))
13 funco 5295 . . . 4 ((Fun 𝐺 ∧ Fun (inr ↾ dom 𝐺)) → Fun (𝐺(inr ↾ dom 𝐺)))
148, 12, 13syl2anc 411 . . 3 (𝜑 → Fun (𝐺(inr ↾ dom 𝐺)))
15 dmcoss 4932 . . . . . . 7 dom (𝐹(inl ↾ dom 𝐹)) ⊆ dom (inl ↾ dom 𝐹)
16 df-rn 4671 . . . . . . 7 ran (inl ↾ dom 𝐹) = dom (inl ↾ dom 𝐹)
1715, 16sseqtrri 3215 . . . . . 6 dom (𝐹(inl ↾ dom 𝐹)) ⊆ ran (inl ↾ dom 𝐹)
18 dmcoss 4932 . . . . . . 7 dom (𝐺(inr ↾ dom 𝐺)) ⊆ dom (inr ↾ dom 𝐺)
19 df-rn 4671 . . . . . . 7 ran (inr ↾ dom 𝐺) = dom (inr ↾ dom 𝐺)
2018, 19sseqtrri 3215 . . . . . 6 dom (𝐺(inr ↾ dom 𝐺)) ⊆ ran (inr ↾ dom 𝐺)
21 ss2in 3388 . . . . . 6 ((dom (𝐹(inl ↾ dom 𝐹)) ⊆ ran (inl ↾ dom 𝐹) ∧ dom (𝐺(inr ↾ dom 𝐺)) ⊆ ran (inr ↾ dom 𝐺)) → (dom (𝐹(inl ↾ dom 𝐹)) ∩ dom (𝐺(inr ↾ dom 𝐺))) ⊆ (ran (inl ↾ dom 𝐹) ∩ ran (inr ↾ dom 𝐺)))
2217, 20, 21mp2an 426 . . . . 5 (dom (𝐹(inl ↾ dom 𝐹)) ∩ dom (𝐺(inr ↾ dom 𝐺))) ⊆ (ran (inl ↾ dom 𝐹) ∩ ran (inr ↾ dom 𝐺))
23 djuinr 7124 . . . . . 6 (ran (inl ↾ dom 𝐹) ∩ ran (inr ↾ dom 𝐺)) = ∅
2423a1i 9 . . . . 5 (𝜑 → (ran (inl ↾ dom 𝐹) ∩ ran (inr ↾ dom 𝐺)) = ∅)
2522, 24sseqtrid 3230 . . . 4 (𝜑 → (dom (𝐹(inl ↾ dom 𝐹)) ∩ dom (𝐺(inr ↾ dom 𝐺))) ⊆ ∅)
26 ss0 3488 . . . 4 ((dom (𝐹(inl ↾ dom 𝐹)) ∩ dom (𝐺(inr ↾ dom 𝐺))) ⊆ ∅ → (dom (𝐹(inl ↾ dom 𝐹)) ∩ dom (𝐺(inr ↾ dom 𝐺))) = ∅)
2725, 26syl 14 . . 3 (𝜑 → (dom (𝐹(inl ↾ dom 𝐹)) ∩ dom (𝐺(inr ↾ dom 𝐺))) = ∅)
28 funun 5299 . . 3 (((Fun (𝐹(inl ↾ dom 𝐹)) ∧ Fun (𝐺(inr ↾ dom 𝐺))) ∧ (dom (𝐹(inl ↾ dom 𝐹)) ∩ dom (𝐺(inr ↾ dom 𝐺))) = ∅) → Fun ((𝐹(inl ↾ dom 𝐹)) ∪ (𝐺(inr ↾ dom 𝐺))))
297, 14, 27, 28syl21anc 1248 . 2 (𝜑 → Fun ((𝐹(inl ↾ dom 𝐹)) ∪ (𝐺(inr ↾ dom 𝐺))))
30 df-djud 7164 . . 3 (𝐹d 𝐺) = ((𝐹(inl ↾ dom 𝐹)) ∪ (𝐺(inr ↾ dom 𝐺)))
3130funeqi 5276 . 2 (Fun (𝐹d 𝐺) ↔ Fun ((𝐹(inl ↾ dom 𝐹)) ∪ (𝐺(inr ↾ dom 𝐺))))
3229, 31sylibr 134 1 (𝜑 → Fun (𝐹d 𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  cun 3152  cin 3153  wss 3154  c0 3447  ccnv 4659  dom cdm 4660  ran crn 4661  cres 4662  ccom 4664  Fun wfun 5249  wf 5251  1-1wf1 5252  cdju 7098  inlcinl 7106  inrcinr 7107  d cdjud 7163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1st 6195  df-2nd 6196  df-1o 6471  df-dju 7099  df-inl 7108  df-inr 7109  df-djud 7164
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator