Proof of Theorem djufun
| Step | Hyp | Ref
| Expression |
| 1 | | djufun.f |
. . . 4
⊢ (𝜑 → Fun 𝐹) |
| 2 | | inlresf1 7127 |
. . . . 5
⊢ (inl
↾ dom 𝐹):dom 𝐹–1-1→(dom 𝐹 ⊔ dom 𝐺) |
| 3 | | df-f1 5263 |
. . . . . 6
⊢ ((inl
↾ dom 𝐹):dom 𝐹–1-1→(dom 𝐹 ⊔ dom 𝐺) ↔ ((inl ↾ dom 𝐹):dom 𝐹⟶(dom 𝐹 ⊔ dom 𝐺) ∧ Fun ◡(inl ↾ dom 𝐹))) |
| 4 | 3 | simprbi 275 |
. . . . 5
⊢ ((inl
↾ dom 𝐹):dom 𝐹–1-1→(dom 𝐹 ⊔ dom 𝐺) → Fun ◡(inl ↾ dom 𝐹)) |
| 5 | 2, 4 | mp1i 10 |
. . . 4
⊢ (𝜑 → Fun ◡(inl ↾ dom 𝐹)) |
| 6 | | funco 5298 |
. . . 4
⊢ ((Fun
𝐹 ∧ Fun ◡(inl ↾ dom 𝐹)) → Fun (𝐹 ∘ ◡(inl ↾ dom 𝐹))) |
| 7 | 1, 5, 6 | syl2anc 411 |
. . 3
⊢ (𝜑 → Fun (𝐹 ∘ ◡(inl ↾ dom 𝐹))) |
| 8 | | djufun.g |
. . . 4
⊢ (𝜑 → Fun 𝐺) |
| 9 | | inrresf1 7128 |
. . . . 5
⊢ (inr
↾ dom 𝐺):dom 𝐺–1-1→(dom 𝐹 ⊔ dom 𝐺) |
| 10 | | df-f1 5263 |
. . . . . 6
⊢ ((inr
↾ dom 𝐺):dom 𝐺–1-1→(dom 𝐹 ⊔ dom 𝐺) ↔ ((inr ↾ dom 𝐺):dom 𝐺⟶(dom 𝐹 ⊔ dom 𝐺) ∧ Fun ◡(inr ↾ dom 𝐺))) |
| 11 | 10 | simprbi 275 |
. . . . 5
⊢ ((inr
↾ dom 𝐺):dom 𝐺–1-1→(dom 𝐹 ⊔ dom 𝐺) → Fun ◡(inr ↾ dom 𝐺)) |
| 12 | 9, 11 | mp1i 10 |
. . . 4
⊢ (𝜑 → Fun ◡(inr ↾ dom 𝐺)) |
| 13 | | funco 5298 |
. . . 4
⊢ ((Fun
𝐺 ∧ Fun ◡(inr ↾ dom 𝐺)) → Fun (𝐺 ∘ ◡(inr ↾ dom 𝐺))) |
| 14 | 8, 12, 13 | syl2anc 411 |
. . 3
⊢ (𝜑 → Fun (𝐺 ∘ ◡(inr ↾ dom 𝐺))) |
| 15 | | dmcoss 4935 |
. . . . . . 7
⊢ dom
(𝐹 ∘ ◡(inl ↾ dom 𝐹)) ⊆ dom ◡(inl ↾ dom 𝐹) |
| 16 | | df-rn 4674 |
. . . . . . 7
⊢ ran (inl
↾ dom 𝐹) = dom ◡(inl ↾ dom 𝐹) |
| 17 | 15, 16 | sseqtrri 3218 |
. . . . . 6
⊢ dom
(𝐹 ∘ ◡(inl ↾ dom 𝐹)) ⊆ ran (inl ↾ dom 𝐹) |
| 18 | | dmcoss 4935 |
. . . . . . 7
⊢ dom
(𝐺 ∘ ◡(inr ↾ dom 𝐺)) ⊆ dom ◡(inr ↾ dom 𝐺) |
| 19 | | df-rn 4674 |
. . . . . . 7
⊢ ran (inr
↾ dom 𝐺) = dom ◡(inr ↾ dom 𝐺) |
| 20 | 18, 19 | sseqtrri 3218 |
. . . . . 6
⊢ dom
(𝐺 ∘ ◡(inr ↾ dom 𝐺)) ⊆ ran (inr ↾ dom 𝐺) |
| 21 | | ss2in 3391 |
. . . . . 6
⊢ ((dom
(𝐹 ∘ ◡(inl ↾ dom 𝐹)) ⊆ ran (inl ↾ dom 𝐹) ∧ dom (𝐺 ∘ ◡(inr ↾ dom 𝐺)) ⊆ ran (inr ↾ dom 𝐺)) → (dom (𝐹 ∘ ◡(inl ↾ dom 𝐹)) ∩ dom (𝐺 ∘ ◡(inr ↾ dom 𝐺))) ⊆ (ran (inl ↾ dom 𝐹) ∩ ran (inr ↾ dom
𝐺))) |
| 22 | 17, 20, 21 | mp2an 426 |
. . . . 5
⊢ (dom
(𝐹 ∘ ◡(inl ↾ dom 𝐹)) ∩ dom (𝐺 ∘ ◡(inr ↾ dom 𝐺))) ⊆ (ran (inl ↾ dom 𝐹) ∩ ran (inr ↾ dom
𝐺)) |
| 23 | | djuinr 7129 |
. . . . . 6
⊢ (ran (inl
↾ dom 𝐹) ∩ ran
(inr ↾ dom 𝐺)) =
∅ |
| 24 | 23 | a1i 9 |
. . . . 5
⊢ (𝜑 → (ran (inl ↾ dom
𝐹) ∩ ran (inr ↾
dom 𝐺)) =
∅) |
| 25 | 22, 24 | sseqtrid 3233 |
. . . 4
⊢ (𝜑 → (dom (𝐹 ∘ ◡(inl ↾ dom 𝐹)) ∩ dom (𝐺 ∘ ◡(inr ↾ dom 𝐺))) ⊆ ∅) |
| 26 | | ss0 3491 |
. . . 4
⊢ ((dom
(𝐹 ∘ ◡(inl ↾ dom 𝐹)) ∩ dom (𝐺 ∘ ◡(inr ↾ dom 𝐺))) ⊆ ∅ → (dom (𝐹 ∘ ◡(inl ↾ dom 𝐹)) ∩ dom (𝐺 ∘ ◡(inr ↾ dom 𝐺))) = ∅) |
| 27 | 25, 26 | syl 14 |
. . 3
⊢ (𝜑 → (dom (𝐹 ∘ ◡(inl ↾ dom 𝐹)) ∩ dom (𝐺 ∘ ◡(inr ↾ dom 𝐺))) = ∅) |
| 28 | | funun 5302 |
. . 3
⊢ (((Fun
(𝐹 ∘ ◡(inl ↾ dom 𝐹)) ∧ Fun (𝐺 ∘ ◡(inr ↾ dom 𝐺))) ∧ (dom (𝐹 ∘ ◡(inl ↾ dom 𝐹)) ∩ dom (𝐺 ∘ ◡(inr ↾ dom 𝐺))) = ∅) → Fun ((𝐹 ∘ ◡(inl ↾ dom 𝐹)) ∪ (𝐺 ∘ ◡(inr ↾ dom 𝐺)))) |
| 29 | 7, 14, 27, 28 | syl21anc 1248 |
. 2
⊢ (𝜑 → Fun ((𝐹 ∘ ◡(inl ↾ dom 𝐹)) ∪ (𝐺 ∘ ◡(inr ↾ dom 𝐺)))) |
| 30 | | df-djud 7169 |
. . 3
⊢ (𝐹 ⊔d 𝐺) = ((𝐹 ∘ ◡(inl ↾ dom 𝐹)) ∪ (𝐺 ∘ ◡(inr ↾ dom 𝐺))) |
| 31 | 30 | funeqi 5279 |
. 2
⊢ (Fun
(𝐹 ⊔d
𝐺) ↔ Fun ((𝐹 ∘ ◡(inl ↾ dom 𝐹)) ∪ (𝐺 ∘ ◡(inr ↾ dom 𝐺)))) |
| 32 | 29, 31 | sylibr 134 |
1
⊢ (𝜑 → Fun (𝐹 ⊔d 𝐺)) |