ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  updjud GIF version

Theorem updjud 7081
Description: Universal property of the disjoint union. (Proposed by BJ, 25-Jun-2022.) (Contributed by AV, 28-Jun-2022.)
Hypotheses
Ref Expression
updjud.f (πœ‘ β†’ 𝐹:𝐴⟢𝐢)
updjud.g (πœ‘ β†’ 𝐺:𝐡⟢𝐢)
updjud.a (πœ‘ β†’ 𝐴 ∈ 𝑉)
updjud.b (πœ‘ β†’ 𝐡 ∈ π‘Š)
Assertion
Ref Expression
updjud (πœ‘ β†’ βˆƒ!β„Ž(β„Ž:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (β„Ž ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (β„Ž ∘ (inr β†Ύ 𝐡)) = 𝐺))
Distinct variable groups:   𝐴,β„Ž   𝐡,β„Ž   𝐢,β„Ž   β„Ž,𝐹   β„Ž,𝐺   πœ‘,β„Ž
Allowed substitution hints:   𝑉(β„Ž)   π‘Š(β„Ž)

Proof of Theorem updjud
Dummy variables π‘˜ π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 updjud.a . . . . . 6 (πœ‘ β†’ 𝐴 ∈ 𝑉)
2 updjud.b . . . . . 6 (πœ‘ β†’ 𝐡 ∈ π‘Š)
31, 2jca 306 . . . . 5 (πœ‘ β†’ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š))
4 djuex 7042 . . . . 5 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ (𝐴 βŠ” 𝐡) ∈ V)
5 mptexg 5742 . . . . 5 ((𝐴 βŠ” 𝐡) ∈ V β†’ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∈ V)
63, 4, 53syl 17 . . . 4 (πœ‘ β†’ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∈ V)
7 feq1 5349 . . . . . . 7 (β„Ž = (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) β†’ (β„Ž:(𝐴 βŠ” 𝐡)⟢𝐢 ↔ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢))
8 coeq1 4785 . . . . . . . 8 (β„Ž = (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) β†’ (β„Ž ∘ (inl β†Ύ 𝐴)) = ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)))
98eqeq1d 2186 . . . . . . 7 (β„Ž = (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) β†’ ((β„Ž ∘ (inl β†Ύ 𝐴)) = 𝐹 ↔ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹))
10 coeq1 4785 . . . . . . . 8 (β„Ž = (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) β†’ (β„Ž ∘ (inr β†Ύ 𝐡)) = ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)))
1110eqeq1d 2186 . . . . . . 7 (β„Ž = (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) β†’ ((β„Ž ∘ (inr β†Ύ 𝐡)) = 𝐺 ↔ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺))
127, 9, 113anbi123d 1312 . . . . . 6 (β„Ž = (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) β†’ ((β„Ž:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (β„Ž ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (β„Ž ∘ (inr β†Ύ 𝐡)) = 𝐺) ↔ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)))
13 eqeq1 2184 . . . . . . . 8 (β„Ž = (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) β†’ (β„Ž = π‘˜ ↔ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) = π‘˜))
1413imbi2d 230 . . . . . . 7 (β„Ž = (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) β†’ (((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ β„Ž = π‘˜) ↔ ((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) = π‘˜)))
1514ralbidv 2477 . . . . . 6 (β„Ž = (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) β†’ (βˆ€π‘˜ ∈ V ((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ β„Ž = π‘˜) ↔ βˆ€π‘˜ ∈ V ((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) = π‘˜)))
1612, 15anbi12d 473 . . . . 5 (β„Ž = (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) β†’ (((β„Ž:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (β„Ž ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (β„Ž ∘ (inr β†Ύ 𝐡)) = 𝐺) ∧ βˆ€π‘˜ ∈ V ((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ β„Ž = π‘˜)) ↔ (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺) ∧ βˆ€π‘˜ ∈ V ((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) = π‘˜))))
1716adantl 277 . . . 4 ((πœ‘ ∧ β„Ž = (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))) β†’ (((β„Ž:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (β„Ž ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (β„Ž ∘ (inr β†Ύ 𝐡)) = 𝐺) ∧ βˆ€π‘˜ ∈ V ((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ β„Ž = π‘˜)) ↔ (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺) ∧ βˆ€π‘˜ ∈ V ((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) = π‘˜))))
18 updjud.f . . . . . 6 (πœ‘ β†’ 𝐹:𝐴⟢𝐢)
19 updjud.g . . . . . 6 (πœ‘ β†’ 𝐺:𝐡⟢𝐢)
20 eqid 2177 . . . . . 6 (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) = (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))
2118, 19, 20updjudhf 7078 . . . . 5 (πœ‘ β†’ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢)
2218, 19, 20updjudhcoinlf 7079 . . . . 5 (πœ‘ β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹)
2318, 19, 20updjudhcoinrg 7080 . . . . 5 (πœ‘ β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)
24 simpr 110 . . . . . . 7 ((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺))
25 eqeq2 2187 . . . . . . . . . . . . . . . . . . . . . 22 (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 β†’ ((π‘˜ ∘ (inl β†Ύ 𝐴)) = ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) ↔ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹))
26 fvres 5540 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ 𝐴 β†’ ((inl β†Ύ 𝐴)β€˜π‘§) = (inlβ€˜π‘§))
2726eqcomd 2183 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ 𝐴 β†’ (inlβ€˜π‘§) = ((inl β†Ύ 𝐴)β€˜π‘§))
2827eqeq2d 2189 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ 𝐴 β†’ (𝑦 = (inlβ€˜π‘§) ↔ 𝑦 = ((inl β†Ύ 𝐴)β€˜π‘§)))
2928adantl 277 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = (π‘˜ ∘ (inl β†Ύ 𝐴)) ∧ πœ‘) ∧ 𝑧 ∈ 𝐴) β†’ (𝑦 = (inlβ€˜π‘§) ↔ 𝑦 = ((inl β†Ύ 𝐴)β€˜π‘§)))
30 fveq1 5515 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = (π‘˜ ∘ (inl β†Ύ 𝐴)) β†’ (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴))β€˜π‘§) = ((π‘˜ ∘ (inl β†Ύ 𝐴))β€˜π‘§))
3130ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = (π‘˜ ∘ (inl β†Ύ 𝐴)) ∧ πœ‘) ∧ 𝑧 ∈ 𝐴) β†’ (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴))β€˜π‘§) = ((π‘˜ ∘ (inl β†Ύ 𝐴))β€˜π‘§))
32 inlresf1 7060 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (inl β†Ύ 𝐴):𝐴–1-1β†’(𝐴 βŠ” 𝐡)
33 f1fn 5424 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((inl β†Ύ 𝐴):𝐴–1-1β†’(𝐴 βŠ” 𝐡) β†’ (inl β†Ύ 𝐴) Fn 𝐴)
3432, 33mp1i 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = (π‘˜ ∘ (inl β†Ύ 𝐴)) ∧ πœ‘) β†’ (inl β†Ύ 𝐴) Fn 𝐴)
35 fvco2 5586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((inl β†Ύ 𝐴) Fn 𝐴 ∧ 𝑧 ∈ 𝐴) β†’ (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴))β€˜π‘§) = ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜((inl β†Ύ 𝐴)β€˜π‘§)))
3634, 35sylan 283 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = (π‘˜ ∘ (inl β†Ύ 𝐴)) ∧ πœ‘) ∧ 𝑧 ∈ 𝐴) β†’ (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴))β€˜π‘§) = ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜((inl β†Ύ 𝐴)β€˜π‘§)))
37 fvco2 5586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((inl β†Ύ 𝐴) Fn 𝐴 ∧ 𝑧 ∈ 𝐴) β†’ ((π‘˜ ∘ (inl β†Ύ 𝐴))β€˜π‘§) = (π‘˜β€˜((inl β†Ύ 𝐴)β€˜π‘§)))
3834, 37sylan 283 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = (π‘˜ ∘ (inl β†Ύ 𝐴)) ∧ πœ‘) ∧ 𝑧 ∈ 𝐴) β†’ ((π‘˜ ∘ (inl β†Ύ 𝐴))β€˜π‘§) = (π‘˜β€˜((inl β†Ύ 𝐴)β€˜π‘§)))
3931, 36, 383eqtr3d 2218 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = (π‘˜ ∘ (inl β†Ύ 𝐴)) ∧ πœ‘) ∧ 𝑧 ∈ 𝐴) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜((inl β†Ύ 𝐴)β€˜π‘§)) = (π‘˜β€˜((inl β†Ύ 𝐴)β€˜π‘§)))
40 fveq2 5516 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = ((inl β†Ύ 𝐴)β€˜π‘§) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜((inl β†Ύ 𝐴)β€˜π‘§)))
41 fveq2 5516 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = ((inl β†Ύ 𝐴)β€˜π‘§) β†’ (π‘˜β€˜π‘¦) = (π‘˜β€˜((inl β†Ύ 𝐴)β€˜π‘§)))
4240, 41eqeq12d 2192 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = ((inl β†Ύ 𝐴)β€˜π‘§) β†’ (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦) ↔ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜((inl β†Ύ 𝐴)β€˜π‘§)) = (π‘˜β€˜((inl β†Ύ 𝐴)β€˜π‘§))))
4339, 42syl5ibrcom 157 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = (π‘˜ ∘ (inl β†Ύ 𝐴)) ∧ πœ‘) ∧ 𝑧 ∈ 𝐴) β†’ (𝑦 = ((inl β†Ύ 𝐴)β€˜π‘§) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))
4429, 43sylbid 150 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = (π‘˜ ∘ (inl β†Ύ 𝐴)) ∧ πœ‘) ∧ 𝑧 ∈ 𝐴) β†’ (𝑦 = (inlβ€˜π‘§) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))
4544expimpd 363 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = (π‘˜ ∘ (inl β†Ύ 𝐴)) ∧ πœ‘) β†’ ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inlβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))
4645ex 115 . . . . . . . . . . . . . . . . . . . . . . 23 (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = (π‘˜ ∘ (inl β†Ύ 𝐴)) β†’ (πœ‘ β†’ ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inlβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦))))
4746eqcoms 2180 . . . . . . . . . . . . . . . . . . . . . 22 ((π‘˜ ∘ (inl β†Ύ 𝐴)) = ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) β†’ (πœ‘ β†’ ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inlβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦))))
4825, 47syl6bir 164 . . . . . . . . . . . . . . . . . . . . 21 (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 β†’ ((π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 β†’ (πœ‘ β†’ ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inlβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))))
4948com23 78 . . . . . . . . . . . . . . . . . . . 20 (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 β†’ (πœ‘ β†’ ((π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 β†’ ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inlβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))))
50493ad2ant2 1019 . . . . . . . . . . . . . . . . . . 19 (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ (πœ‘ β†’ ((π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 β†’ ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inlβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))))
5150impcom 125 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ ((π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 β†’ ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inlβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦))))
5251com12 30 . . . . . . . . . . . . . . . . 17 ((π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 β†’ ((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inlβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦))))
53523ad2ant2 1019 . . . . . . . . . . . . . . . 16 ((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ ((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inlβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦))))
5453impcom 125 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) ∧ (π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inlβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))
5554com12 30 . . . . . . . . . . . . . 14 ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inlβ€˜π‘§)) β†’ (((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) ∧ (π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))
5655rexlimiva 2589 . . . . . . . . . . . . 13 (βˆƒπ‘§ ∈ 𝐴 𝑦 = (inlβ€˜π‘§) β†’ (((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) ∧ (π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))
57 eqeq2 2187 . . . . . . . . . . . . . . . . . . . . . 22 (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺 β†’ ((π‘˜ ∘ (inr β†Ύ 𝐡)) = ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) ↔ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺))
58 fvres 5540 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ 𝐡 β†’ ((inr β†Ύ 𝐡)β€˜π‘§) = (inrβ€˜π‘§))
5958eqcomd 2183 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ 𝐡 β†’ (inrβ€˜π‘§) = ((inr β†Ύ 𝐡)β€˜π‘§))
6059eqeq2d 2189 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ 𝐡 β†’ (𝑦 = (inrβ€˜π‘§) ↔ 𝑦 = ((inr β†Ύ 𝐡)β€˜π‘§)))
6160adantl 277 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = (π‘˜ ∘ (inr β†Ύ 𝐡)) ∧ πœ‘) ∧ 𝑧 ∈ 𝐡) β†’ (𝑦 = (inrβ€˜π‘§) ↔ 𝑦 = ((inr β†Ύ 𝐡)β€˜π‘§)))
62 fveq1 5515 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = (π‘˜ ∘ (inr β†Ύ 𝐡)) β†’ (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡))β€˜π‘§) = ((π‘˜ ∘ (inr β†Ύ 𝐡))β€˜π‘§))
6362ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = (π‘˜ ∘ (inr β†Ύ 𝐡)) ∧ πœ‘) ∧ 𝑧 ∈ 𝐡) β†’ (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡))β€˜π‘§) = ((π‘˜ ∘ (inr β†Ύ 𝐡))β€˜π‘§))
64 inrresf1 7061 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (inr β†Ύ 𝐡):𝐡–1-1β†’(𝐴 βŠ” 𝐡)
65 f1fn 5424 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((inr β†Ύ 𝐡):𝐡–1-1β†’(𝐴 βŠ” 𝐡) β†’ (inr β†Ύ 𝐡) Fn 𝐡)
6664, 65mp1i 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = (π‘˜ ∘ (inr β†Ύ 𝐡)) ∧ πœ‘) β†’ (inr β†Ύ 𝐡) Fn 𝐡)
67 fvco2 5586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((inr β†Ύ 𝐡) Fn 𝐡 ∧ 𝑧 ∈ 𝐡) β†’ (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡))β€˜π‘§) = ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜((inr β†Ύ 𝐡)β€˜π‘§)))
6866, 67sylan 283 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = (π‘˜ ∘ (inr β†Ύ 𝐡)) ∧ πœ‘) ∧ 𝑧 ∈ 𝐡) β†’ (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡))β€˜π‘§) = ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜((inr β†Ύ 𝐡)β€˜π‘§)))
69 fvco2 5586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((inr β†Ύ 𝐡) Fn 𝐡 ∧ 𝑧 ∈ 𝐡) β†’ ((π‘˜ ∘ (inr β†Ύ 𝐡))β€˜π‘§) = (π‘˜β€˜((inr β†Ύ 𝐡)β€˜π‘§)))
7066, 69sylan 283 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = (π‘˜ ∘ (inr β†Ύ 𝐡)) ∧ πœ‘) ∧ 𝑧 ∈ 𝐡) β†’ ((π‘˜ ∘ (inr β†Ύ 𝐡))β€˜π‘§) = (π‘˜β€˜((inr β†Ύ 𝐡)β€˜π‘§)))
7163, 68, 703eqtr3d 2218 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = (π‘˜ ∘ (inr β†Ύ 𝐡)) ∧ πœ‘) ∧ 𝑧 ∈ 𝐡) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜((inr β†Ύ 𝐡)β€˜π‘§)) = (π‘˜β€˜((inr β†Ύ 𝐡)β€˜π‘§)))
72 fveq2 5516 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = ((inr β†Ύ 𝐡)β€˜π‘§) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜((inr β†Ύ 𝐡)β€˜π‘§)))
73 fveq2 5516 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = ((inr β†Ύ 𝐡)β€˜π‘§) β†’ (π‘˜β€˜π‘¦) = (π‘˜β€˜((inr β†Ύ 𝐡)β€˜π‘§)))
7472, 73eqeq12d 2192 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = ((inr β†Ύ 𝐡)β€˜π‘§) β†’ (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦) ↔ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜((inr β†Ύ 𝐡)β€˜π‘§)) = (π‘˜β€˜((inr β†Ύ 𝐡)β€˜π‘§))))
7571, 74syl5ibrcom 157 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = (π‘˜ ∘ (inr β†Ύ 𝐡)) ∧ πœ‘) ∧ 𝑧 ∈ 𝐡) β†’ (𝑦 = ((inr β†Ύ 𝐡)β€˜π‘§) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))
7661, 75sylbid 150 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = (π‘˜ ∘ (inr β†Ύ 𝐡)) ∧ πœ‘) ∧ 𝑧 ∈ 𝐡) β†’ (𝑦 = (inrβ€˜π‘§) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))
7776expimpd 363 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = (π‘˜ ∘ (inr β†Ύ 𝐡)) ∧ πœ‘) β†’ ((𝑧 ∈ 𝐡 ∧ 𝑦 = (inrβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))
7877ex 115 . . . . . . . . . . . . . . . . . . . . . . 23 (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = (π‘˜ ∘ (inr β†Ύ 𝐡)) β†’ (πœ‘ β†’ ((𝑧 ∈ 𝐡 ∧ 𝑦 = (inrβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦))))
7978eqcoms 2180 . . . . . . . . . . . . . . . . . . . . . 22 ((π‘˜ ∘ (inr β†Ύ 𝐡)) = ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) β†’ (πœ‘ β†’ ((𝑧 ∈ 𝐡 ∧ 𝑦 = (inrβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦))))
8057, 79syl6bir 164 . . . . . . . . . . . . . . . . . . . . 21 (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺 β†’ ((π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺 β†’ (πœ‘ β†’ ((𝑧 ∈ 𝐡 ∧ 𝑦 = (inrβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))))
8180com23 78 . . . . . . . . . . . . . . . . . . . 20 (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺 β†’ (πœ‘ β†’ ((π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺 β†’ ((𝑧 ∈ 𝐡 ∧ 𝑦 = (inrβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))))
82813ad2ant3 1020 . . . . . . . . . . . . . . . . . . 19 (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ (πœ‘ β†’ ((π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺 β†’ ((𝑧 ∈ 𝐡 ∧ 𝑦 = (inrβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))))
8382impcom 125 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ ((π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺 β†’ ((𝑧 ∈ 𝐡 ∧ 𝑦 = (inrβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦))))
8483com12 30 . . . . . . . . . . . . . . . . 17 ((π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺 β†’ ((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ ((𝑧 ∈ 𝐡 ∧ 𝑦 = (inrβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦))))
85843ad2ant3 1020 . . . . . . . . . . . . . . . 16 ((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ ((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ ((𝑧 ∈ 𝐡 ∧ 𝑦 = (inrβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦))))
8685impcom 125 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) ∧ (π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ ((𝑧 ∈ 𝐡 ∧ 𝑦 = (inrβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))
8786com12 30 . . . . . . . . . . . . . 14 ((𝑧 ∈ 𝐡 ∧ 𝑦 = (inrβ€˜π‘§)) β†’ (((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) ∧ (π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))
8887rexlimiva 2589 . . . . . . . . . . . . 13 (βˆƒπ‘§ ∈ 𝐡 𝑦 = (inrβ€˜π‘§) β†’ (((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) ∧ (π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))
8956, 88jaoi 716 . . . . . . . . . . . 12 ((βˆƒπ‘§ ∈ 𝐴 𝑦 = (inlβ€˜π‘§) ∨ βˆƒπ‘§ ∈ 𝐡 𝑦 = (inrβ€˜π‘§)) β†’ (((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) ∧ (π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))
90 djur 7068 . . . . . . . . . . . . 13 (𝑦 ∈ (𝐴 βŠ” 𝐡) ↔ (βˆƒπ‘§ ∈ 𝐴 𝑦 = (inlβ€˜π‘§) ∨ βˆƒπ‘§ ∈ 𝐡 𝑦 = (inrβ€˜π‘§)))
9190biimpi 120 . . . . . . . . . . . 12 (𝑦 ∈ (𝐴 βŠ” 𝐡) β†’ (βˆƒπ‘§ ∈ 𝐴 𝑦 = (inlβ€˜π‘§) ∨ βˆƒπ‘§ ∈ 𝐡 𝑦 = (inrβ€˜π‘§)))
9289, 91syl11 31 . . . . . . . . . . 11 (((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) ∧ (π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ (𝑦 ∈ (𝐴 βŠ” 𝐡) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))
9392ralrimiv 2549 . . . . . . . . . 10 (((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) ∧ (π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ βˆ€π‘¦ ∈ (𝐴 βŠ” 𝐡)((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦))
94 ffn 5366 . . . . . . . . . . . . 13 ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 β†’ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) Fn (𝐴 βŠ” 𝐡))
95943ad2ant1 1018 . . . . . . . . . . . 12 (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) Fn (𝐴 βŠ” 𝐡))
9695adantl 277 . . . . . . . . . . 11 ((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) Fn (𝐴 βŠ” 𝐡))
97 ffn 5366 . . . . . . . . . . . 12 (π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 β†’ π‘˜ Fn (𝐴 βŠ” 𝐡))
98973ad2ant1 1018 . . . . . . . . . . 11 ((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ π‘˜ Fn (𝐴 βŠ” 𝐡))
99 eqfnfv 5614 . . . . . . . . . . 11 (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) Fn (𝐴 βŠ” 𝐡) ∧ π‘˜ Fn (𝐴 βŠ” 𝐡)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) = π‘˜ ↔ βˆ€π‘¦ ∈ (𝐴 βŠ” 𝐡)((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))
10096, 98, 99syl2an 289 . . . . . . . . . 10 (((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) ∧ (π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) = π‘˜ ↔ βˆ€π‘¦ ∈ (𝐴 βŠ” 𝐡)((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))
10193, 100mpbird 167 . . . . . . . . 9 (((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) ∧ (π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) = π‘˜)
102101ex 115 . . . . . . . 8 ((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ ((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) = π‘˜))
103102ralrimivw 2551 . . . . . . 7 ((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ βˆ€π‘˜ ∈ V ((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) = π‘˜))
10424, 103jca 306 . . . . . 6 ((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺) ∧ βˆ€π‘˜ ∈ V ((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) = π‘˜)))
105104ex 115 . . . . 5 (πœ‘ β†’ (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺) ∧ βˆ€π‘˜ ∈ V ((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) = π‘˜))))
10621, 22, 23, 105mp3and 1340 . . . 4 (πœ‘ β†’ (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺) ∧ βˆ€π‘˜ ∈ V ((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) = π‘˜)))
1076, 17, 106rspcedvd 2848 . . 3 (πœ‘ β†’ βˆƒβ„Ž ∈ V ((β„Ž:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (β„Ž ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (β„Ž ∘ (inr β†Ύ 𝐡)) = 𝐺) ∧ βˆ€π‘˜ ∈ V ((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ β„Ž = π‘˜)))
108 feq1 5349 . . . . 5 (β„Ž = π‘˜ β†’ (β„Ž:(𝐴 βŠ” 𝐡)⟢𝐢 ↔ π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢))
109 coeq1 4785 . . . . . 6 (β„Ž = π‘˜ β†’ (β„Ž ∘ (inl β†Ύ 𝐴)) = (π‘˜ ∘ (inl β†Ύ 𝐴)))
110109eqeq1d 2186 . . . . 5 (β„Ž = π‘˜ β†’ ((β„Ž ∘ (inl β†Ύ 𝐴)) = 𝐹 ↔ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹))
111 coeq1 4785 . . . . . 6 (β„Ž = π‘˜ β†’ (β„Ž ∘ (inr β†Ύ 𝐡)) = (π‘˜ ∘ (inr β†Ύ 𝐡)))
112111eqeq1d 2186 . . . . 5 (β„Ž = π‘˜ β†’ ((β„Ž ∘ (inr β†Ύ 𝐡)) = 𝐺 ↔ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺))
113108, 110, 1123anbi123d 1312 . . . 4 (β„Ž = π‘˜ β†’ ((β„Ž:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (β„Ž ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (β„Ž ∘ (inr β†Ύ 𝐡)) = 𝐺) ↔ (π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺)))
114113reu8 2934 . . 3 (βˆƒ!β„Ž ∈ V (β„Ž:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (β„Ž ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (β„Ž ∘ (inr β†Ύ 𝐡)) = 𝐺) ↔ βˆƒβ„Ž ∈ V ((β„Ž:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (β„Ž ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (β„Ž ∘ (inr β†Ύ 𝐡)) = 𝐺) ∧ βˆ€π‘˜ ∈ V ((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ β„Ž = π‘˜)))
115107, 114sylibr 134 . 2 (πœ‘ β†’ βˆƒ!β„Ž ∈ V (β„Ž:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (β„Ž ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (β„Ž ∘ (inr β†Ύ 𝐡)) = 𝐺))
116 reuv 2757 . 2 (βˆƒ!β„Ž ∈ V (β„Ž:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (β„Ž ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (β„Ž ∘ (inr β†Ύ 𝐡)) = 𝐺) ↔ βˆƒ!β„Ž(β„Ž:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (β„Ž ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (β„Ž ∘ (inr β†Ύ 𝐡)) = 𝐺))
117115, 116sylib 122 1 (πœ‘ β†’ βˆƒ!β„Ž(β„Ž:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (β„Ž ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (β„Ž ∘ (inr β†Ύ 𝐡)) = 𝐺))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   ∨ wo 708   ∧ w3a 978   = wceq 1353  βˆƒ!weu 2026   ∈ wcel 2148  βˆ€wral 2455  βˆƒwrex 2456  βˆƒ!wreu 2457  Vcvv 2738  βˆ…c0 3423  ifcif 3535   ↦ cmpt 4065   β†Ύ cres 4629   ∘ ccom 4631   Fn wfn 5212  βŸΆwf 5213  β€“1-1β†’wf1 5214  β€˜cfv 5217  1st c1st 6139  2nd c2nd 6140   βŠ” cdju 7036  inlcinl 7044  inrcinr 7045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-iord 4367  df-on 4369  df-suc 4372  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-1st 6141  df-2nd 6142  df-1o 6417  df-dju 7037  df-inl 7046  df-inr 7047
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator