Step | Hyp | Ref
| Expression |
1 | | updjud.a |
. . . . . 6
β’ (π β π΄ β π) |
2 | | updjud.b |
. . . . . 6
β’ (π β π΅ β π) |
3 | 1, 2 | jca 306 |
. . . . 5
β’ (π β (π΄ β π β§ π΅ β π)) |
4 | | djuex 7042 |
. . . . 5
β’ ((π΄ β π β§ π΅ β π) β (π΄ β π΅) β V) |
5 | | mptexg 5742 |
. . . . 5
β’ ((π΄ β π΅) β V β (π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β V) |
6 | 3, 4, 5 | 3syl 17 |
. . . 4
β’ (π β (π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β V) |
7 | | feq1 5349 |
. . . . . . 7
β’ (β = (π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (β:(π΄ β π΅)βΆπΆ β (π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ)) |
8 | | coeq1 4785 |
. . . . . . . 8
β’ (β = (π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (β β (inl βΎ π΄)) = ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄))) |
9 | 8 | eqeq1d 2186 |
. . . . . . 7
β’ (β = (π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β ((β β (inl βΎ π΄)) = πΉ β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ)) |
10 | | coeq1 4785 |
. . . . . . . 8
β’ (β = (π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (β β (inr βΎ π΅)) = ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅))) |
11 | 10 | eqeq1d 2186 |
. . . . . . 7
β’ (β = (π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β ((β β (inr βΎ π΅)) = πΊ β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ)) |
12 | 7, 9, 11 | 3anbi123d 1312 |
. . . . . 6
β’ (β = (π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β ((β:(π΄ β π΅)βΆπΆ β§ (β β (inl βΎ π΄)) = πΉ β§ (β β (inr βΎ π΅)) = πΊ) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ))) |
13 | | eqeq1 2184 |
. . . . . . . 8
β’ (β = (π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (β = π β (π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) = π)) |
14 | 13 | imbi2d 230 |
. . . . . . 7
β’ (β = (π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (((π:(π΄ β π΅)βΆπΆ β§ (π β (inl βΎ π΄)) = πΉ β§ (π β (inr βΎ π΅)) = πΊ) β β = π) β ((π:(π΄ β π΅)βΆπΆ β§ (π β (inl βΎ π΄)) = πΉ β§ (π β (inr βΎ π΅)) = πΊ) β (π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) = π))) |
15 | 14 | ralbidv 2477 |
. . . . . 6
β’ (β = (π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (βπ β V ((π:(π΄ β π΅)βΆπΆ β§ (π β (inl βΎ π΄)) = πΉ β§ (π β (inr βΎ π΅)) = πΊ) β β = π) β βπ β V ((π:(π΄ β π΅)βΆπΆ β§ (π β (inl βΎ π΄)) = πΉ β§ (π β (inr βΎ π΅)) = πΊ) β (π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) = π))) |
16 | 12, 15 | anbi12d 473 |
. . . . 5
β’ (β = (π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (((β:(π΄ β π΅)βΆπΆ β§ (β β (inl βΎ π΄)) = πΉ β§ (β β (inr βΎ π΅)) = πΊ) β§ βπ β V ((π:(π΄ β π΅)βΆπΆ β§ (π β (inl βΎ π΄)) = πΉ β§ (π β (inr βΎ π΅)) = πΊ) β β = π)) β (((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ) β§ βπ β V ((π:(π΄ β π΅)βΆπΆ β§ (π β (inl βΎ π΄)) = πΉ β§ (π β (inr βΎ π΅)) = πΊ) β (π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) = π)))) |
17 | 16 | adantl 277 |
. . . 4
β’ ((π β§ β = (π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))) β (((β:(π΄ β π΅)βΆπΆ β§ (β β (inl βΎ π΄)) = πΉ β§ (β β (inr βΎ π΅)) = πΊ) β§ βπ β V ((π:(π΄ β π΅)βΆπΆ β§ (π β (inl βΎ π΄)) = πΉ β§ (π β (inr βΎ π΅)) = πΊ) β β = π)) β (((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ) β§ βπ β V ((π:(π΄ β π΅)βΆπΆ β§ (π β (inl βΎ π΄)) = πΉ β§ (π β (inr βΎ π΅)) = πΊ) β (π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) = π)))) |
18 | | updjud.f |
. . . . . 6
β’ (π β πΉ:π΄βΆπΆ) |
19 | | updjud.g |
. . . . . 6
β’ (π β πΊ:π΅βΆπΆ) |
20 | | eqid 2177 |
. . . . . 6
β’ (π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) = (π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) |
21 | 18, 19, 20 | updjudhf 7078 |
. . . . 5
β’ (π β (π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ) |
22 | 18, 19, 20 | updjudhcoinlf 7079 |
. . . . 5
β’ (π β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ) |
23 | 18, 19, 20 | updjudhcoinrg 7080 |
. . . . 5
β’ (π β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ) |
24 | | simpr 110 |
. . . . . . 7
β’ ((π β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ)) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ)) |
25 | | eqeq2 2187 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β ((π β (inl βΎ π΄)) = ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) β (π β (inl βΎ π΄)) = πΉ)) |
26 | | fvres 5540 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (π§ β π΄ β ((inl βΎ π΄)βπ§) = (inlβπ§)) |
27 | 26 | eqcomd 2183 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ (π§ β π΄ β (inlβπ§) = ((inl βΎ π΄)βπ§)) |
28 | 27 | eqeq2d 2189 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ (π§ β π΄ β (π¦ = (inlβπ§) β π¦ = ((inl βΎ π΄)βπ§))) |
29 | 28 | adantl 277 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’
(((((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = (π β (inl βΎ π΄)) β§ π) β§ π§ β π΄) β (π¦ = (inlβπ§) β π¦ = ((inl βΎ π΄)βπ§))) |
30 | | fveq1 5515 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = (π β (inl βΎ π΄)) β (((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄))βπ§) = ((π β (inl βΎ π΄))βπ§)) |
31 | 30 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’
(((((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = (π β (inl βΎ π΄)) β§ π) β§ π§ β π΄) β (((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄))βπ§) = ((π β (inl βΎ π΄))βπ§)) |
32 | | inlresf1 7060 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ (inl
βΎ π΄):π΄β1-1β(π΄ β π΅) |
33 | | f1fn 5424 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ ((inl
βΎ π΄):π΄β1-1β(π΄ β π΅) β (inl βΎ π΄) Fn π΄) |
34 | 32, 33 | mp1i 10 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ ((((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = (π β (inl βΎ π΄)) β§ π) β (inl βΎ π΄) Fn π΄) |
35 | | fvco2 5586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (((inl
βΎ π΄) Fn π΄ β§ π§ β π΄) β (((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄))βπ§) = ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))β((inl βΎ π΄)βπ§))) |
36 | 34, 35 | sylan 283 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’
(((((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = (π β (inl βΎ π΄)) β§ π) β§ π§ β π΄) β (((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄))βπ§) = ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))β((inl βΎ π΄)βπ§))) |
37 | | fvco2 5586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (((inl
βΎ π΄) Fn π΄ β§ π§ β π΄) β ((π β (inl βΎ π΄))βπ§) = (πβ((inl βΎ π΄)βπ§))) |
38 | 34, 37 | sylan 283 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’
(((((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = (π β (inl βΎ π΄)) β§ π) β§ π§ β π΄) β ((π β (inl βΎ π΄))βπ§) = (πβ((inl βΎ π΄)βπ§))) |
39 | 31, 36, 38 | 3eqtr3d 2218 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’
(((((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = (π β (inl βΎ π΄)) β§ π) β§ π§ β π΄) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))β((inl βΎ π΄)βπ§)) = (πβ((inl βΎ π΄)βπ§))) |
40 | | fveq2 5516 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ (π¦ = ((inl βΎ π΄)βπ§) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))β((inl βΎ π΄)βπ§))) |
41 | | fveq2 5516 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ (π¦ = ((inl βΎ π΄)βπ§) β (πβπ¦) = (πβ((inl βΎ π΄)βπ§))) |
42 | 40, 41 | eqeq12d 2192 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ (π¦ = ((inl βΎ π΄)βπ§) β (((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = (πβπ¦) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))β((inl βΎ π΄)βπ§)) = (πβ((inl βΎ π΄)βπ§)))) |
43 | 39, 42 | syl5ibrcom 157 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’
(((((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = (π β (inl βΎ π΄)) β§ π) β§ π§ β π΄) β (π¦ = ((inl βΎ π΄)βπ§) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = (πβπ¦))) |
44 | 29, 43 | sylbid 150 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’
(((((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = (π β (inl βΎ π΄)) β§ π) β§ π§ β π΄) β (π¦ = (inlβπ§) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = (πβπ¦))) |
45 | 44 | expimpd 363 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ ((((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = (π β (inl βΎ π΄)) β§ π) β ((π§ β π΄ β§ π¦ = (inlβπ§)) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = (πβπ¦))) |
46 | 45 | ex 115 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = (π β (inl βΎ π΄)) β (π β ((π§ β π΄ β§ π¦ = (inlβπ§)) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = (πβπ¦)))) |
47 | 46 | eqcoms 2180 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β (inl βΎ π΄)) = ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) β (π β ((π§ β π΄ β§ π¦ = (inlβπ§)) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = (πβπ¦)))) |
48 | 25, 47 | syl6bir 164 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β ((π β (inl βΎ π΄)) = πΉ β (π β ((π§ β π΄ β§ π¦ = (inlβπ§)) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = (πβπ¦))))) |
49 | 48 | com23 78 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β (π β ((π β (inl βΎ π΄)) = πΉ β ((π§ β π΄ β§ π¦ = (inlβπ§)) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = (πβπ¦))))) |
50 | 49 | 3ad2ant2 1019 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ) β (π β ((π β (inl βΎ π΄)) = πΉ β ((π§ β π΄ β§ π¦ = (inlβπ§)) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = (πβπ¦))))) |
51 | 50 | impcom 125 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ)) β ((π β (inl βΎ π΄)) = πΉ β ((π§ β π΄ β§ π¦ = (inlβπ§)) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = (πβπ¦)))) |
52 | 51 | com12 30 |
. . . . . . . . . . . . . . . . 17
β’ ((π β (inl βΎ π΄)) = πΉ β ((π β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ)) β ((π§ β π΄ β§ π¦ = (inlβπ§)) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = (πβπ¦)))) |
53 | 52 | 3ad2ant2 1019 |
. . . . . . . . . . . . . . . 16
β’ ((π:(π΄ β π΅)βΆπΆ β§ (π β (inl βΎ π΄)) = πΉ β§ (π β (inr βΎ π΅)) = πΊ) β ((π β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ)) β ((π§ β π΄ β§ π¦ = (inlβπ§)) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = (πβπ¦)))) |
54 | 53 | impcom 125 |
. . . . . . . . . . . . . . 15
β’ (((π β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ)) β§ (π:(π΄ β π΅)βΆπΆ β§ (π β (inl βΎ π΄)) = πΉ β§ (π β (inr βΎ π΅)) = πΊ)) β ((π§ β π΄ β§ π¦ = (inlβπ§)) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = (πβπ¦))) |
55 | 54 | com12 30 |
. . . . . . . . . . . . . 14
β’ ((π§ β π΄ β§ π¦ = (inlβπ§)) β (((π β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ)) β§ (π:(π΄ β π΅)βΆπΆ β§ (π β (inl βΎ π΄)) = πΉ β§ (π β (inr βΎ π΅)) = πΊ)) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = (πβπ¦))) |
56 | 55 | rexlimiva 2589 |
. . . . . . . . . . . . 13
β’
(βπ§ β
π΄ π¦ = (inlβπ§) β (((π β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ)) β§ (π:(π΄ β π΅)βΆπΆ β§ (π β (inl βΎ π΄)) = πΉ β§ (π β (inr βΎ π΅)) = πΊ)) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = (πβπ¦))) |
57 | | eqeq2 2187 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ β ((π β (inr βΎ π΅)) = ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) β (π β (inr βΎ π΅)) = πΊ)) |
58 | | fvres 5540 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (π§ β π΅ β ((inr βΎ π΅)βπ§) = (inrβπ§)) |
59 | 58 | eqcomd 2183 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ (π§ β π΅ β (inrβπ§) = ((inr βΎ π΅)βπ§)) |
60 | 59 | eqeq2d 2189 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ (π§ β π΅ β (π¦ = (inrβπ§) β π¦ = ((inr βΎ π΅)βπ§))) |
61 | 60 | adantl 277 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’
(((((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = (π β (inr βΎ π΅)) β§ π) β§ π§ β π΅) β (π¦ = (inrβπ§) β π¦ = ((inr βΎ π΅)βπ§))) |
62 | | fveq1 5515 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = (π β (inr βΎ π΅)) β (((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅))βπ§) = ((π β (inr βΎ π΅))βπ§)) |
63 | 62 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’
(((((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = (π β (inr βΎ π΅)) β§ π) β§ π§ β π΅) β (((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅))βπ§) = ((π β (inr βΎ π΅))βπ§)) |
64 | | inrresf1 7061 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ (inr
βΎ π΅):π΅β1-1β(π΄ β π΅) |
65 | | f1fn 5424 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ ((inr
βΎ π΅):π΅β1-1β(π΄ β π΅) β (inr βΎ π΅) Fn π΅) |
66 | 64, 65 | mp1i 10 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ ((((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = (π β (inr βΎ π΅)) β§ π) β (inr βΎ π΅) Fn π΅) |
67 | | fvco2 5586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (((inr
βΎ π΅) Fn π΅ β§ π§ β π΅) β (((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅))βπ§) = ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))β((inr βΎ π΅)βπ§))) |
68 | 66, 67 | sylan 283 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’
(((((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = (π β (inr βΎ π΅)) β§ π) β§ π§ β π΅) β (((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅))βπ§) = ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))β((inr βΎ π΅)βπ§))) |
69 | | fvco2 5586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (((inr
βΎ π΅) Fn π΅ β§ π§ β π΅) β ((π β (inr βΎ π΅))βπ§) = (πβ((inr βΎ π΅)βπ§))) |
70 | 66, 69 | sylan 283 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’
(((((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = (π β (inr βΎ π΅)) β§ π) β§ π§ β π΅) β ((π β (inr βΎ π΅))βπ§) = (πβ((inr βΎ π΅)βπ§))) |
71 | 63, 68, 70 | 3eqtr3d 2218 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’
(((((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = (π β (inr βΎ π΅)) β§ π) β§ π§ β π΅) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))β((inr βΎ π΅)βπ§)) = (πβ((inr βΎ π΅)βπ§))) |
72 | | fveq2 5516 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ (π¦ = ((inr βΎ π΅)βπ§) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))β((inr βΎ π΅)βπ§))) |
73 | | fveq2 5516 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ (π¦ = ((inr βΎ π΅)βπ§) β (πβπ¦) = (πβ((inr βΎ π΅)βπ§))) |
74 | 72, 73 | eqeq12d 2192 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ (π¦ = ((inr βΎ π΅)βπ§) β (((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = (πβπ¦) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))β((inr βΎ π΅)βπ§)) = (πβ((inr βΎ π΅)βπ§)))) |
75 | 71, 74 | syl5ibrcom 157 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’
(((((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = (π β (inr βΎ π΅)) β§ π) β§ π§ β π΅) β (π¦ = ((inr βΎ π΅)βπ§) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = (πβπ¦))) |
76 | 61, 75 | sylbid 150 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’
(((((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = (π β (inr βΎ π΅)) β§ π) β§ π§ β π΅) β (π¦ = (inrβπ§) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = (πβπ¦))) |
77 | 76 | expimpd 363 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ ((((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = (π β (inr βΎ π΅)) β§ π) β ((π§ β π΅ β§ π¦ = (inrβπ§)) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = (πβπ¦))) |
78 | 77 | ex 115 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = (π β (inr βΎ π΅)) β (π β ((π§ β π΅ β§ π¦ = (inrβπ§)) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = (πβπ¦)))) |
79 | 78 | eqcoms 2180 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β (inr βΎ π΅)) = ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) β (π β ((π§ β π΅ β§ π¦ = (inrβπ§)) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = (πβπ¦)))) |
80 | 57, 79 | syl6bir 164 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ β ((π β (inr βΎ π΅)) = πΊ β (π β ((π§ β π΅ β§ π¦ = (inrβπ§)) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = (πβπ¦))))) |
81 | 80 | com23 78 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ β (π β ((π β (inr βΎ π΅)) = πΊ β ((π§ β π΅ β§ π¦ = (inrβπ§)) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = (πβπ¦))))) |
82 | 81 | 3ad2ant3 1020 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ) β (π β ((π β (inr βΎ π΅)) = πΊ β ((π§ β π΅ β§ π¦ = (inrβπ§)) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = (πβπ¦))))) |
83 | 82 | impcom 125 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ)) β ((π β (inr βΎ π΅)) = πΊ β ((π§ β π΅ β§ π¦ = (inrβπ§)) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = (πβπ¦)))) |
84 | 83 | com12 30 |
. . . . . . . . . . . . . . . . 17
β’ ((π β (inr βΎ π΅)) = πΊ β ((π β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ)) β ((π§ β π΅ β§ π¦ = (inrβπ§)) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = (πβπ¦)))) |
85 | 84 | 3ad2ant3 1020 |
. . . . . . . . . . . . . . . 16
β’ ((π:(π΄ β π΅)βΆπΆ β§ (π β (inl βΎ π΄)) = πΉ β§ (π β (inr βΎ π΅)) = πΊ) β ((π β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ)) β ((π§ β π΅ β§ π¦ = (inrβπ§)) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = (πβπ¦)))) |
86 | 85 | impcom 125 |
. . . . . . . . . . . . . . 15
β’ (((π β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ)) β§ (π:(π΄ β π΅)βΆπΆ β§ (π β (inl βΎ π΄)) = πΉ β§ (π β (inr βΎ π΅)) = πΊ)) β ((π§ β π΅ β§ π¦ = (inrβπ§)) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = (πβπ¦))) |
87 | 86 | com12 30 |
. . . . . . . . . . . . . 14
β’ ((π§ β π΅ β§ π¦ = (inrβπ§)) β (((π β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ)) β§ (π:(π΄ β π΅)βΆπΆ β§ (π β (inl βΎ π΄)) = πΉ β§ (π β (inr βΎ π΅)) = πΊ)) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = (πβπ¦))) |
88 | 87 | rexlimiva 2589 |
. . . . . . . . . . . . 13
β’
(βπ§ β
π΅ π¦ = (inrβπ§) β (((π β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ)) β§ (π:(π΄ β π΅)βΆπΆ β§ (π β (inl βΎ π΄)) = πΉ β§ (π β (inr βΎ π΅)) = πΊ)) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = (πβπ¦))) |
89 | 56, 88 | jaoi 716 |
. . . . . . . . . . . 12
β’
((βπ§ β
π΄ π¦ = (inlβπ§) β¨ βπ§ β π΅ π¦ = (inrβπ§)) β (((π β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ)) β§ (π:(π΄ β π΅)βΆπΆ β§ (π β (inl βΎ π΄)) = πΉ β§ (π β (inr βΎ π΅)) = πΊ)) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = (πβπ¦))) |
90 | | djur 7068 |
. . . . . . . . . . . . 13
β’ (π¦ β (π΄ β π΅) β (βπ§ β π΄ π¦ = (inlβπ§) β¨ βπ§ β π΅ π¦ = (inrβπ§))) |
91 | 90 | biimpi 120 |
. . . . . . . . . . . 12
β’ (π¦ β (π΄ β π΅) β (βπ§ β π΄ π¦ = (inlβπ§) β¨ βπ§ β π΅ π¦ = (inrβπ§))) |
92 | 89, 91 | syl11 31 |
. . . . . . . . . . 11
β’ (((π β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ)) β§ (π:(π΄ β π΅)βΆπΆ β§ (π β (inl βΎ π΄)) = πΉ β§ (π β (inr βΎ π΅)) = πΊ)) β (π¦ β (π΄ β π΅) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = (πβπ¦))) |
93 | 92 | ralrimiv 2549 |
. . . . . . . . . 10
β’ (((π β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ)) β§ (π:(π΄ β π΅)βΆπΆ β§ (π β (inl βΎ π΄)) = πΉ β§ (π β (inr βΎ π΅)) = πΊ)) β βπ¦ β (π΄ β π΅)((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = (πβπ¦)) |
94 | | ffn 5366 |
. . . . . . . . . . . . 13
β’ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ β (π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) Fn (π΄ β π΅)) |
95 | 94 | 3ad2ant1 1018 |
. . . . . . . . . . . 12
β’ (((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ) β (π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) Fn (π΄ β π΅)) |
96 | 95 | adantl 277 |
. . . . . . . . . . 11
β’ ((π β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ)) β (π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) Fn (π΄ β π΅)) |
97 | | ffn 5366 |
. . . . . . . . . . . 12
β’ (π:(π΄ β π΅)βΆπΆ β π Fn (π΄ β π΅)) |
98 | 97 | 3ad2ant1 1018 |
. . . . . . . . . . 11
β’ ((π:(π΄ β π΅)βΆπΆ β§ (π β (inl βΎ π΄)) = πΉ β§ (π β (inr βΎ π΅)) = πΊ) β π Fn (π΄ β π΅)) |
99 | | eqfnfv 5614 |
. . . . . . . . . . 11
β’ (((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) Fn (π΄ β π΅) β§ π Fn (π΄ β π΅)) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) = π β βπ¦ β (π΄ β π΅)((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = (πβπ¦))) |
100 | 96, 98, 99 | syl2an 289 |
. . . . . . . . . 10
β’ (((π β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ)) β§ (π:(π΄ β π΅)βΆπΆ β§ (π β (inl βΎ π΄)) = πΉ β§ (π β (inr βΎ π΅)) = πΊ)) β ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) = π β βπ¦ β (π΄ β π΅)((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))βπ¦) = (πβπ¦))) |
101 | 93, 100 | mpbird 167 |
. . . . . . . . 9
β’ (((π β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ)) β§ (π:(π΄ β π΅)βΆπΆ β§ (π β (inl βΎ π΄)) = πΉ β§ (π β (inr βΎ π΅)) = πΊ)) β (π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) = π) |
102 | 101 | ex 115 |
. . . . . . . 8
β’ ((π β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ)) β ((π:(π΄ β π΅)βΆπΆ β§ (π β (inl βΎ π΄)) = πΉ β§ (π β (inr βΎ π΅)) = πΊ) β (π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) = π)) |
103 | 102 | ralrimivw 2551 |
. . . . . . 7
β’ ((π β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ)) β βπ β V ((π:(π΄ β π΅)βΆπΆ β§ (π β (inl βΎ π΄)) = πΉ β§ (π β (inr βΎ π΅)) = πΊ) β (π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) = π)) |
104 | 24, 103 | jca 306 |
. . . . . 6
β’ ((π β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ)) β (((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ) β§ βπ β V ((π:(π΄ β π΅)βΆπΆ β§ (π β (inl βΎ π΄)) = πΉ β§ (π β (inr βΎ π΅)) = πΊ) β (π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) = π))) |
105 | 104 | ex 115 |
. . . . 5
β’ (π β (((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ) β (((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ) β§ βπ β V ((π:(π΄ β π΅)βΆπΆ β§ (π β (inl βΎ π΄)) = πΉ β§ (π β (inr βΎ π΅)) = πΊ) β (π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) = π)))) |
106 | 21, 22, 23, 105 | mp3and 1340 |
. . . 4
β’ (π β (((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))):(π΄ β π΅)βΆπΆ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inl βΎ π΄)) = πΉ β§ ((π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) β (inr βΎ π΅)) = πΊ) β§ βπ β V ((π:(π΄ β π΅)βΆπΆ β§ (π β (inl βΎ π΄)) = πΉ β§ (π β (inr βΎ π΅)) = πΊ) β (π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) = π))) |
107 | 6, 17, 106 | rspcedvd 2848 |
. . 3
β’ (π β ββ β V ((β:(π΄ β π΅)βΆπΆ β§ (β β (inl βΎ π΄)) = πΉ β§ (β β (inr βΎ π΅)) = πΊ) β§ βπ β V ((π:(π΄ β π΅)βΆπΆ β§ (π β (inl βΎ π΄)) = πΉ β§ (π β (inr βΎ π΅)) = πΊ) β β = π))) |
108 | | feq1 5349 |
. . . . 5
β’ (β = π β (β:(π΄ β π΅)βΆπΆ β π:(π΄ β π΅)βΆπΆ)) |
109 | | coeq1 4785 |
. . . . . 6
β’ (β = π β (β β (inl βΎ π΄)) = (π β (inl βΎ π΄))) |
110 | 109 | eqeq1d 2186 |
. . . . 5
β’ (β = π β ((β β (inl βΎ π΄)) = πΉ β (π β (inl βΎ π΄)) = πΉ)) |
111 | | coeq1 4785 |
. . . . . 6
β’ (β = π β (β β (inr βΎ π΅)) = (π β (inr βΎ π΅))) |
112 | 111 | eqeq1d 2186 |
. . . . 5
β’ (β = π β ((β β (inr βΎ π΅)) = πΊ β (π β (inr βΎ π΅)) = πΊ)) |
113 | 108, 110,
112 | 3anbi123d 1312 |
. . . 4
β’ (β = π β ((β:(π΄ β π΅)βΆπΆ β§ (β β (inl βΎ π΄)) = πΉ β§ (β β (inr βΎ π΅)) = πΊ) β (π:(π΄ β π΅)βΆπΆ β§ (π β (inl βΎ π΄)) = πΉ β§ (π β (inr βΎ π΅)) = πΊ))) |
114 | 113 | reu8 2934 |
. . 3
β’
(β!β β V
(β:(π΄ β π΅)βΆπΆ β§ (β β (inl βΎ π΄)) = πΉ β§ (β β (inr βΎ π΅)) = πΊ) β ββ β V ((β:(π΄ β π΅)βΆπΆ β§ (β β (inl βΎ π΄)) = πΉ β§ (β β (inr βΎ π΅)) = πΊ) β§ βπ β V ((π:(π΄ β π΅)βΆπΆ β§ (π β (inl βΎ π΄)) = πΉ β§ (π β (inr βΎ π΅)) = πΊ) β β = π))) |
115 | 107, 114 | sylibr 134 |
. 2
β’ (π β β!β β V (β:(π΄ β π΅)βΆπΆ β§ (β β (inl βΎ π΄)) = πΉ β§ (β β (inr βΎ π΅)) = πΊ)) |
116 | | reuv 2757 |
. 2
β’
(β!β β V
(β:(π΄ β π΅)βΆπΆ β§ (β β (inl βΎ π΄)) = πΉ β§ (β β (inr βΎ π΅)) = πΊ) β β!β(β:(π΄ β π΅)βΆπΆ β§ (β β (inl βΎ π΄)) = πΉ β§ (β β (inr βΎ π΅)) = πΊ)) |
117 | 115, 116 | sylib 122 |
1
β’ (π β β!β(β:(π΄ β π΅)βΆπΆ β§ (β β (inl βΎ π΄)) = πΉ β§ (β β (inr βΎ π΅)) = πΊ)) |