| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djudm | GIF version | ||
| Description: The domain of the "domain-disjoint-union" is the disjoint union of the domains. Remark: its range is the (standard) union of the ranges. (Contributed by BJ, 10-Jul-2022.) |
| Ref | Expression |
|---|---|
| djudm | ⊢ dom (𝐹 ⊔d 𝐺) = (dom 𝐹 ⊔ dom 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-djud 7169 | . . 3 ⊢ (𝐹 ⊔d 𝐺) = ((𝐹 ∘ ◡(inl ↾ dom 𝐹)) ∪ (𝐺 ∘ ◡(inr ↾ dom 𝐺))) | |
| 2 | 1 | dmeqi 4867 | . 2 ⊢ dom (𝐹 ⊔d 𝐺) = dom ((𝐹 ∘ ◡(inl ↾ dom 𝐹)) ∪ (𝐺 ∘ ◡(inr ↾ dom 𝐺))) |
| 3 | dmun 4873 | . 2 ⊢ dom ((𝐹 ∘ ◡(inl ↾ dom 𝐹)) ∪ (𝐺 ∘ ◡(inr ↾ dom 𝐺))) = (dom (𝐹 ∘ ◡(inl ↾ dom 𝐹)) ∪ dom (𝐺 ∘ ◡(inr ↾ dom 𝐺))) | |
| 4 | dmco 5178 | . . . . 5 ⊢ dom (𝐹 ∘ ◡(inl ↾ dom 𝐹)) = (◡◡(inl ↾ dom 𝐹) “ dom 𝐹) | |
| 5 | imacnvcnv 5134 | . . . . 5 ⊢ (◡◡(inl ↾ dom 𝐹) “ dom 𝐹) = ((inl ↾ dom 𝐹) “ dom 𝐹) | |
| 6 | resima 4979 | . . . . . 6 ⊢ ((inl ↾ dom 𝐹) “ dom 𝐹) = (inl “ dom 𝐹) | |
| 7 | df-ima 4676 | . . . . . 6 ⊢ (inl “ dom 𝐹) = ran (inl ↾ dom 𝐹) | |
| 8 | 6, 7 | eqtri 2217 | . . . . 5 ⊢ ((inl ↾ dom 𝐹) “ dom 𝐹) = ran (inl ↾ dom 𝐹) |
| 9 | 4, 5, 8 | 3eqtri 2221 | . . . 4 ⊢ dom (𝐹 ∘ ◡(inl ↾ dom 𝐹)) = ran (inl ↾ dom 𝐹) |
| 10 | dmco 5178 | . . . . 5 ⊢ dom (𝐺 ∘ ◡(inr ↾ dom 𝐺)) = (◡◡(inr ↾ dom 𝐺) “ dom 𝐺) | |
| 11 | imacnvcnv 5134 | . . . . 5 ⊢ (◡◡(inr ↾ dom 𝐺) “ dom 𝐺) = ((inr ↾ dom 𝐺) “ dom 𝐺) | |
| 12 | resima 4979 | . . . . . 6 ⊢ ((inr ↾ dom 𝐺) “ dom 𝐺) = (inr “ dom 𝐺) | |
| 13 | df-ima 4676 | . . . . . 6 ⊢ (inr “ dom 𝐺) = ran (inr ↾ dom 𝐺) | |
| 14 | 12, 13 | eqtri 2217 | . . . . 5 ⊢ ((inr ↾ dom 𝐺) “ dom 𝐺) = ran (inr ↾ dom 𝐺) |
| 15 | 10, 11, 14 | 3eqtri 2221 | . . . 4 ⊢ dom (𝐺 ∘ ◡(inr ↾ dom 𝐺)) = ran (inr ↾ dom 𝐺) |
| 16 | 9, 15 | uneq12i 3315 | . . 3 ⊢ (dom (𝐹 ∘ ◡(inl ↾ dom 𝐹)) ∪ dom (𝐺 ∘ ◡(inr ↾ dom 𝐺))) = (ran (inl ↾ dom 𝐹) ∪ ran (inr ↾ dom 𝐺)) |
| 17 | djuunr 7132 | . . 3 ⊢ (ran (inl ↾ dom 𝐹) ∪ ran (inr ↾ dom 𝐺)) = (dom 𝐹 ⊔ dom 𝐺) | |
| 18 | 16, 17 | eqtri 2217 | . 2 ⊢ (dom (𝐹 ∘ ◡(inl ↾ dom 𝐹)) ∪ dom (𝐺 ∘ ◡(inr ↾ dom 𝐺))) = (dom 𝐹 ⊔ dom 𝐺) |
| 19 | 2, 3, 18 | 3eqtri 2221 | 1 ⊢ dom (𝐹 ⊔d 𝐺) = (dom 𝐹 ⊔ dom 𝐺) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∪ cun 3155 ◡ccnv 4662 dom cdm 4663 ran crn 4664 ↾ cres 4665 “ cima 4666 ∘ ccom 4667 ⊔ cdju 7103 inlcinl 7111 inrcinr 7112 ⊔d cdjud 7168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-1st 6198 df-2nd 6199 df-1o 6474 df-dju 7104 df-inl 7113 df-inr 7114 df-djud 7169 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |