ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djudm GIF version

Theorem djudm 7082
Description: The domain of the "domain-disjoint-union" is the disjoint union of the domains. Remark: its range is the (standard) union of the ranges. (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
djudm dom (𝐹d 𝐺) = (dom 𝐹 ⊔ dom 𝐺)

Proof of Theorem djudm
StepHypRef Expression
1 df-djud 7080 . . 3 (𝐹d 𝐺) = ((𝐹(inl ↾ dom 𝐹)) ∪ (𝐺(inr ↾ dom 𝐺)))
21dmeqi 4812 . 2 dom (𝐹d 𝐺) = dom ((𝐹(inl ↾ dom 𝐹)) ∪ (𝐺(inr ↾ dom 𝐺)))
3 dmun 4818 . 2 dom ((𝐹(inl ↾ dom 𝐹)) ∪ (𝐺(inr ↾ dom 𝐺))) = (dom (𝐹(inl ↾ dom 𝐹)) ∪ dom (𝐺(inr ↾ dom 𝐺)))
4 dmco 5119 . . . . 5 dom (𝐹(inl ↾ dom 𝐹)) = ((inl ↾ dom 𝐹) “ dom 𝐹)
5 imacnvcnv 5075 . . . . 5 ((inl ↾ dom 𝐹) “ dom 𝐹) = ((inl ↾ dom 𝐹) “ dom 𝐹)
6 resima 4924 . . . . . 6 ((inl ↾ dom 𝐹) “ dom 𝐹) = (inl “ dom 𝐹)
7 df-ima 4624 . . . . . 6 (inl “ dom 𝐹) = ran (inl ↾ dom 𝐹)
86, 7eqtri 2191 . . . . 5 ((inl ↾ dom 𝐹) “ dom 𝐹) = ran (inl ↾ dom 𝐹)
94, 5, 83eqtri 2195 . . . 4 dom (𝐹(inl ↾ dom 𝐹)) = ran (inl ↾ dom 𝐹)
10 dmco 5119 . . . . 5 dom (𝐺(inr ↾ dom 𝐺)) = ((inr ↾ dom 𝐺) “ dom 𝐺)
11 imacnvcnv 5075 . . . . 5 ((inr ↾ dom 𝐺) “ dom 𝐺) = ((inr ↾ dom 𝐺) “ dom 𝐺)
12 resima 4924 . . . . . 6 ((inr ↾ dom 𝐺) “ dom 𝐺) = (inr “ dom 𝐺)
13 df-ima 4624 . . . . . 6 (inr “ dom 𝐺) = ran (inr ↾ dom 𝐺)
1412, 13eqtri 2191 . . . . 5 ((inr ↾ dom 𝐺) “ dom 𝐺) = ran (inr ↾ dom 𝐺)
1510, 11, 143eqtri 2195 . . . 4 dom (𝐺(inr ↾ dom 𝐺)) = ran (inr ↾ dom 𝐺)
169, 15uneq12i 3279 . . 3 (dom (𝐹(inl ↾ dom 𝐹)) ∪ dom (𝐺(inr ↾ dom 𝐺))) = (ran (inl ↾ dom 𝐹) ∪ ran (inr ↾ dom 𝐺))
17 djuunr 7043 . . 3 (ran (inl ↾ dom 𝐹) ∪ ran (inr ↾ dom 𝐺)) = (dom 𝐹 ⊔ dom 𝐺)
1816, 17eqtri 2191 . 2 (dom (𝐹(inl ↾ dom 𝐹)) ∪ dom (𝐺(inr ↾ dom 𝐺))) = (dom 𝐹 ⊔ dom 𝐺)
192, 3, 183eqtri 2195 1 dom (𝐹d 𝐺) = (dom 𝐹 ⊔ dom 𝐺)
Colors of variables: wff set class
Syntax hints:   = wceq 1348  cun 3119  ccnv 4610  dom cdm 4611  ran crn 4612  cres 4613  cima 4614  ccom 4615  cdju 7014  inlcinl 7022  inrcinr 7023  d cdjud 7079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1st 6119  df-2nd 6120  df-1o 6395  df-dju 7015  df-inl 7024  df-inr 7025  df-djud 7080
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator