Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djudm | GIF version |
Description: The domain of the "domain-disjoint-union" is the disjoint union of the domains. Remark: its range is the (standard) union of the ranges. (Contributed by BJ, 10-Jul-2022.) |
Ref | Expression |
---|---|
djudm | ⊢ dom (𝐹 ⊔d 𝐺) = (dom 𝐹 ⊔ dom 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-djud 7068 | . . 3 ⊢ (𝐹 ⊔d 𝐺) = ((𝐹 ∘ ◡(inl ↾ dom 𝐹)) ∪ (𝐺 ∘ ◡(inr ↾ dom 𝐺))) | |
2 | 1 | dmeqi 4805 | . 2 ⊢ dom (𝐹 ⊔d 𝐺) = dom ((𝐹 ∘ ◡(inl ↾ dom 𝐹)) ∪ (𝐺 ∘ ◡(inr ↾ dom 𝐺))) |
3 | dmun 4811 | . 2 ⊢ dom ((𝐹 ∘ ◡(inl ↾ dom 𝐹)) ∪ (𝐺 ∘ ◡(inr ↾ dom 𝐺))) = (dom (𝐹 ∘ ◡(inl ↾ dom 𝐹)) ∪ dom (𝐺 ∘ ◡(inr ↾ dom 𝐺))) | |
4 | dmco 5112 | . . . . 5 ⊢ dom (𝐹 ∘ ◡(inl ↾ dom 𝐹)) = (◡◡(inl ↾ dom 𝐹) “ dom 𝐹) | |
5 | imacnvcnv 5068 | . . . . 5 ⊢ (◡◡(inl ↾ dom 𝐹) “ dom 𝐹) = ((inl ↾ dom 𝐹) “ dom 𝐹) | |
6 | resima 4917 | . . . . . 6 ⊢ ((inl ↾ dom 𝐹) “ dom 𝐹) = (inl “ dom 𝐹) | |
7 | df-ima 4617 | . . . . . 6 ⊢ (inl “ dom 𝐹) = ran (inl ↾ dom 𝐹) | |
8 | 6, 7 | eqtri 2186 | . . . . 5 ⊢ ((inl ↾ dom 𝐹) “ dom 𝐹) = ran (inl ↾ dom 𝐹) |
9 | 4, 5, 8 | 3eqtri 2190 | . . . 4 ⊢ dom (𝐹 ∘ ◡(inl ↾ dom 𝐹)) = ran (inl ↾ dom 𝐹) |
10 | dmco 5112 | . . . . 5 ⊢ dom (𝐺 ∘ ◡(inr ↾ dom 𝐺)) = (◡◡(inr ↾ dom 𝐺) “ dom 𝐺) | |
11 | imacnvcnv 5068 | . . . . 5 ⊢ (◡◡(inr ↾ dom 𝐺) “ dom 𝐺) = ((inr ↾ dom 𝐺) “ dom 𝐺) | |
12 | resima 4917 | . . . . . 6 ⊢ ((inr ↾ dom 𝐺) “ dom 𝐺) = (inr “ dom 𝐺) | |
13 | df-ima 4617 | . . . . . 6 ⊢ (inr “ dom 𝐺) = ran (inr ↾ dom 𝐺) | |
14 | 12, 13 | eqtri 2186 | . . . . 5 ⊢ ((inr ↾ dom 𝐺) “ dom 𝐺) = ran (inr ↾ dom 𝐺) |
15 | 10, 11, 14 | 3eqtri 2190 | . . . 4 ⊢ dom (𝐺 ∘ ◡(inr ↾ dom 𝐺)) = ran (inr ↾ dom 𝐺) |
16 | 9, 15 | uneq12i 3274 | . . 3 ⊢ (dom (𝐹 ∘ ◡(inl ↾ dom 𝐹)) ∪ dom (𝐺 ∘ ◡(inr ↾ dom 𝐺))) = (ran (inl ↾ dom 𝐹) ∪ ran (inr ↾ dom 𝐺)) |
17 | djuunr 7031 | . . 3 ⊢ (ran (inl ↾ dom 𝐹) ∪ ran (inr ↾ dom 𝐺)) = (dom 𝐹 ⊔ dom 𝐺) | |
18 | 16, 17 | eqtri 2186 | . 2 ⊢ (dom (𝐹 ∘ ◡(inl ↾ dom 𝐹)) ∪ dom (𝐺 ∘ ◡(inr ↾ dom 𝐺))) = (dom 𝐹 ⊔ dom 𝐺) |
19 | 2, 3, 18 | 3eqtri 2190 | 1 ⊢ dom (𝐹 ⊔d 𝐺) = (dom 𝐹 ⊔ dom 𝐺) |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∪ cun 3114 ◡ccnv 4603 dom cdm 4604 ran crn 4605 ↾ cres 4606 “ cima 4607 ∘ ccom 4608 ⊔ cdju 7002 inlcinl 7010 inrcinr 7011 ⊔d cdjud 7067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1st 6108 df-2nd 6109 df-1o 6384 df-dju 7003 df-inl 7012 df-inr 7013 df-djud 7068 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |