| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djudm | GIF version | ||
| Description: The domain of the "domain-disjoint-union" is the disjoint union of the domains. Remark: its range is the (standard) union of the ranges. (Contributed by BJ, 10-Jul-2022.) |
| Ref | Expression |
|---|---|
| djudm | ⊢ dom (𝐹 ⊔d 𝐺) = (dom 𝐹 ⊔ dom 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-djud 7205 | . . 3 ⊢ (𝐹 ⊔d 𝐺) = ((𝐹 ∘ ◡(inl ↾ dom 𝐹)) ∪ (𝐺 ∘ ◡(inr ↾ dom 𝐺))) | |
| 2 | 1 | dmeqi 4879 | . 2 ⊢ dom (𝐹 ⊔d 𝐺) = dom ((𝐹 ∘ ◡(inl ↾ dom 𝐹)) ∪ (𝐺 ∘ ◡(inr ↾ dom 𝐺))) |
| 3 | dmun 4885 | . 2 ⊢ dom ((𝐹 ∘ ◡(inl ↾ dom 𝐹)) ∪ (𝐺 ∘ ◡(inr ↾ dom 𝐺))) = (dom (𝐹 ∘ ◡(inl ↾ dom 𝐹)) ∪ dom (𝐺 ∘ ◡(inr ↾ dom 𝐺))) | |
| 4 | dmco 5191 | . . . . 5 ⊢ dom (𝐹 ∘ ◡(inl ↾ dom 𝐹)) = (◡◡(inl ↾ dom 𝐹) “ dom 𝐹) | |
| 5 | imacnvcnv 5147 | . . . . 5 ⊢ (◡◡(inl ↾ dom 𝐹) “ dom 𝐹) = ((inl ↾ dom 𝐹) “ dom 𝐹) | |
| 6 | resima 4992 | . . . . . 6 ⊢ ((inl ↾ dom 𝐹) “ dom 𝐹) = (inl “ dom 𝐹) | |
| 7 | df-ima 4688 | . . . . . 6 ⊢ (inl “ dom 𝐹) = ran (inl ↾ dom 𝐹) | |
| 8 | 6, 7 | eqtri 2226 | . . . . 5 ⊢ ((inl ↾ dom 𝐹) “ dom 𝐹) = ran (inl ↾ dom 𝐹) |
| 9 | 4, 5, 8 | 3eqtri 2230 | . . . 4 ⊢ dom (𝐹 ∘ ◡(inl ↾ dom 𝐹)) = ran (inl ↾ dom 𝐹) |
| 10 | dmco 5191 | . . . . 5 ⊢ dom (𝐺 ∘ ◡(inr ↾ dom 𝐺)) = (◡◡(inr ↾ dom 𝐺) “ dom 𝐺) | |
| 11 | imacnvcnv 5147 | . . . . 5 ⊢ (◡◡(inr ↾ dom 𝐺) “ dom 𝐺) = ((inr ↾ dom 𝐺) “ dom 𝐺) | |
| 12 | resima 4992 | . . . . . 6 ⊢ ((inr ↾ dom 𝐺) “ dom 𝐺) = (inr “ dom 𝐺) | |
| 13 | df-ima 4688 | . . . . . 6 ⊢ (inr “ dom 𝐺) = ran (inr ↾ dom 𝐺) | |
| 14 | 12, 13 | eqtri 2226 | . . . . 5 ⊢ ((inr ↾ dom 𝐺) “ dom 𝐺) = ran (inr ↾ dom 𝐺) |
| 15 | 10, 11, 14 | 3eqtri 2230 | . . . 4 ⊢ dom (𝐺 ∘ ◡(inr ↾ dom 𝐺)) = ran (inr ↾ dom 𝐺) |
| 16 | 9, 15 | uneq12i 3325 | . . 3 ⊢ (dom (𝐹 ∘ ◡(inl ↾ dom 𝐹)) ∪ dom (𝐺 ∘ ◡(inr ↾ dom 𝐺))) = (ran (inl ↾ dom 𝐹) ∪ ran (inr ↾ dom 𝐺)) |
| 17 | djuunr 7168 | . . 3 ⊢ (ran (inl ↾ dom 𝐹) ∪ ran (inr ↾ dom 𝐺)) = (dom 𝐹 ⊔ dom 𝐺) | |
| 18 | 16, 17 | eqtri 2226 | . 2 ⊢ (dom (𝐹 ∘ ◡(inl ↾ dom 𝐹)) ∪ dom (𝐺 ∘ ◡(inr ↾ dom 𝐺))) = (dom 𝐹 ⊔ dom 𝐺) |
| 19 | 2, 3, 18 | 3eqtri 2230 | 1 ⊢ dom (𝐹 ⊔d 𝐺) = (dom 𝐹 ⊔ dom 𝐺) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∪ cun 3164 ◡ccnv 4674 dom cdm 4675 ran crn 4676 ↾ cres 4677 “ cima 4678 ∘ ccom 4679 ⊔ cdju 7139 inlcinl 7147 inrcinr 7148 ⊔d cdjud 7204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-1st 6226 df-2nd 6227 df-1o 6502 df-dju 7140 df-inl 7149 df-inr 7150 df-djud 7205 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |