ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djudm GIF version

Theorem djudm 7207
Description: The domain of the "domain-disjoint-union" is the disjoint union of the domains. Remark: its range is the (standard) union of the ranges. (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
djudm dom (𝐹d 𝐺) = (dom 𝐹 ⊔ dom 𝐺)

Proof of Theorem djudm
StepHypRef Expression
1 df-djud 7205 . . 3 (𝐹d 𝐺) = ((𝐹(inl ↾ dom 𝐹)) ∪ (𝐺(inr ↾ dom 𝐺)))
21dmeqi 4879 . 2 dom (𝐹d 𝐺) = dom ((𝐹(inl ↾ dom 𝐹)) ∪ (𝐺(inr ↾ dom 𝐺)))
3 dmun 4885 . 2 dom ((𝐹(inl ↾ dom 𝐹)) ∪ (𝐺(inr ↾ dom 𝐺))) = (dom (𝐹(inl ↾ dom 𝐹)) ∪ dom (𝐺(inr ↾ dom 𝐺)))
4 dmco 5191 . . . . 5 dom (𝐹(inl ↾ dom 𝐹)) = ((inl ↾ dom 𝐹) “ dom 𝐹)
5 imacnvcnv 5147 . . . . 5 ((inl ↾ dom 𝐹) “ dom 𝐹) = ((inl ↾ dom 𝐹) “ dom 𝐹)
6 resima 4992 . . . . . 6 ((inl ↾ dom 𝐹) “ dom 𝐹) = (inl “ dom 𝐹)
7 df-ima 4688 . . . . . 6 (inl “ dom 𝐹) = ran (inl ↾ dom 𝐹)
86, 7eqtri 2226 . . . . 5 ((inl ↾ dom 𝐹) “ dom 𝐹) = ran (inl ↾ dom 𝐹)
94, 5, 83eqtri 2230 . . . 4 dom (𝐹(inl ↾ dom 𝐹)) = ran (inl ↾ dom 𝐹)
10 dmco 5191 . . . . 5 dom (𝐺(inr ↾ dom 𝐺)) = ((inr ↾ dom 𝐺) “ dom 𝐺)
11 imacnvcnv 5147 . . . . 5 ((inr ↾ dom 𝐺) “ dom 𝐺) = ((inr ↾ dom 𝐺) “ dom 𝐺)
12 resima 4992 . . . . . 6 ((inr ↾ dom 𝐺) “ dom 𝐺) = (inr “ dom 𝐺)
13 df-ima 4688 . . . . . 6 (inr “ dom 𝐺) = ran (inr ↾ dom 𝐺)
1412, 13eqtri 2226 . . . . 5 ((inr ↾ dom 𝐺) “ dom 𝐺) = ran (inr ↾ dom 𝐺)
1510, 11, 143eqtri 2230 . . . 4 dom (𝐺(inr ↾ dom 𝐺)) = ran (inr ↾ dom 𝐺)
169, 15uneq12i 3325 . . 3 (dom (𝐹(inl ↾ dom 𝐹)) ∪ dom (𝐺(inr ↾ dom 𝐺))) = (ran (inl ↾ dom 𝐹) ∪ ran (inr ↾ dom 𝐺))
17 djuunr 7168 . . 3 (ran (inl ↾ dom 𝐹) ∪ ran (inr ↾ dom 𝐺)) = (dom 𝐹 ⊔ dom 𝐺)
1816, 17eqtri 2226 . 2 (dom (𝐹(inl ↾ dom 𝐹)) ∪ dom (𝐺(inr ↾ dom 𝐺))) = (dom 𝐹 ⊔ dom 𝐺)
192, 3, 183eqtri 2230 1 dom (𝐹d 𝐺) = (dom 𝐹 ⊔ dom 𝐺)
Colors of variables: wff set class
Syntax hints:   = wceq 1373  cun 3164  ccnv 4674  dom cdm 4675  ran crn 4676  cres 4677  cima 4678  ccom 4679  cdju 7139  inlcinl 7147  inrcinr 7148  d cdjud 7204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-1st 6226  df-2nd 6227  df-1o 6502  df-dju 7140  df-inl 7149  df-inr 7150  df-djud 7205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator