ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsrvald GIF version

Theorem dvdsrvald 14042
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
dvdsrvald.1 (𝜑𝐵 = (Base‘𝑅))
dvdsrvald.2 (𝜑 = (∥r𝑅))
dvdsrvald.r (𝜑𝑅 ∈ SRing)
dvdsrvald.3 (𝜑· = (.r𝑅))
Assertion
Ref Expression
dvdsrvald (𝜑 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)})
Distinct variable groups:   𝑥,𝑦,   𝑥,𝑧,𝐵,𝑦   𝑥,𝑅,𝑦,𝑧   𝑥, · ,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hint:   (𝑧)

Proof of Theorem dvdsrvald
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 df-dvdsr 14038 . . 3 r = (𝑟 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑟) ∧ ∃𝑧 ∈ (Base‘𝑟)(𝑧(.r𝑟)𝑥) = 𝑦)})
2 fveq2 5623 . . . . . 6 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
32eleq2d 2299 . . . . 5 (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟) ↔ 𝑥 ∈ (Base‘𝑅)))
4 fveq2 5623 . . . . . . . 8 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
54oveqd 6011 . . . . . . 7 (𝑟 = 𝑅 → (𝑧(.r𝑟)𝑥) = (𝑧(.r𝑅)𝑥))
65eqeq1d 2238 . . . . . 6 (𝑟 = 𝑅 → ((𝑧(.r𝑟)𝑥) = 𝑦 ↔ (𝑧(.r𝑅)𝑥) = 𝑦))
72, 6rexeqbidv 2745 . . . . 5 (𝑟 = 𝑅 → (∃𝑧 ∈ (Base‘𝑟)(𝑧(.r𝑟)𝑥) = 𝑦 ↔ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦))
83, 7anbi12d 473 . . . 4 (𝑟 = 𝑅 → ((𝑥 ∈ (Base‘𝑟) ∧ ∃𝑧 ∈ (Base‘𝑟)(𝑧(.r𝑟)𝑥) = 𝑦) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)))
98opabbidv 4149 . . 3 (𝑟 = 𝑅 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑟) ∧ ∃𝑧 ∈ (Base‘𝑟)(𝑧(.r𝑟)𝑥) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)})
10 dvdsrvald.r . . . 4 (𝜑𝑅 ∈ SRing)
1110elexd 2813 . . 3 (𝜑𝑅 ∈ V)
12 basfn 13077 . . . . . 6 Base Fn V
13 funfvex 5640 . . . . . . 7 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
1413funfni 5419 . . . . . 6 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
1512, 11, 14sylancr 414 . . . . 5 (𝜑 → (Base‘𝑅) ∈ V)
16 xpexg 4830 . . . . 5 (((Base‘𝑅) ∈ V ∧ (Base‘𝑅) ∈ V) → ((Base‘𝑅) × (Base‘𝑅)) ∈ V)
1715, 15, 16syl2anc 411 . . . 4 (𝜑 → ((Base‘𝑅) × (Base‘𝑅)) ∈ V)
18 simprr 531 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ (𝑧(.r𝑅)𝑥) = 𝑦)) → (𝑧(.r𝑅)𝑥) = 𝑦)
1910ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ (𝑧(.r𝑅)𝑥) = 𝑦)) → 𝑅 ∈ SRing)
20 simprl 529 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ (𝑧(.r𝑅)𝑥) = 𝑦)) → 𝑧 ∈ (Base‘𝑅))
21 simplr 528 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ (𝑧(.r𝑅)𝑥) = 𝑦)) → 𝑥 ∈ (Base‘𝑅))
22 eqid 2229 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
23 eqid 2229 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
2422, 23srgcl 13919 . . . . . . . . . 10 ((𝑅 ∈ SRing ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑧(.r𝑅)𝑥) ∈ (Base‘𝑅))
2519, 20, 21, 24syl3anc 1271 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ (𝑧(.r𝑅)𝑥) = 𝑦)) → (𝑧(.r𝑅)𝑥) ∈ (Base‘𝑅))
2618, 25eqeltrrd 2307 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ (𝑧(.r𝑅)𝑥) = 𝑦)) → 𝑦 ∈ (Base‘𝑅))
2726rexlimdvaa 2649 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑅)) → (∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦𝑦 ∈ (Base‘𝑅)))
2827imdistanda 448 . . . . . 6 (𝜑 → ((𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦) → (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))))
2928ssopab2dv 4366 . . . . 5 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))})
30 df-xp 4722 . . . . 5 ((Base‘𝑅) × (Base‘𝑅)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))}
3129, 30sseqtrrdi 3273 . . . 4 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)} ⊆ ((Base‘𝑅) × (Base‘𝑅)))
3217, 31ssexd 4223 . . 3 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)} ∈ V)
331, 9, 11, 32fvmptd3 5721 . 2 (𝜑 → (∥r𝑅) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)})
34 dvdsrvald.2 . 2 (𝜑 = (∥r𝑅))
35 dvdsrvald.1 . . . . 5 (𝜑𝐵 = (Base‘𝑅))
3635eleq2d 2299 . . . 4 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝑅)))
37 dvdsrvald.3 . . . . . . 7 (𝜑· = (.r𝑅))
3837oveqd 6011 . . . . . 6 (𝜑 → (𝑧 · 𝑥) = (𝑧(.r𝑅)𝑥))
3938eqeq1d 2238 . . . . 5 (𝜑 → ((𝑧 · 𝑥) = 𝑦 ↔ (𝑧(.r𝑅)𝑥) = 𝑦))
4035, 39rexeqbidv 2745 . . . 4 (𝜑 → (∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦 ↔ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦))
4136, 40anbi12d 473 . . 3 (𝜑 → ((𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)))
4241opabbidv 4149 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)})
4333, 34, 423eqtr4d 2272 1 (𝜑 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wrex 2509  Vcvv 2799  {copab 4143   × cxp 4714   Fn wfn 5309  cfv 5314  (class class class)co 5994  Basecbs 13018  .rcmulr 13097  SRingcsrg 13912  rcdsr 14035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-pre-ltirr 8099  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-iota 5274  df-fun 5316  df-fn 5317  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-pnf 8171  df-mnf 8172  df-ltxr 8174  df-inn 9099  df-2 9157  df-3 9158  df-ndx 13021  df-slot 13022  df-base 13024  df-sets 13025  df-plusg 13109  df-mulr 13110  df-0g 13277  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-mgp 13870  df-srg 13913  df-dvdsr 14038
This theorem is referenced by:  dvdsrd  14043  dvdsrex  14047  dvdsrpropdg  14096  dvdsrzring  14552
  Copyright terms: Public domain W3C validator