| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-dvdsr 13645 | 
. . 3
⊢
∥r = (𝑟 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑟) ∧ ∃𝑧 ∈ (Base‘𝑟)(𝑧(.r‘𝑟)𝑥) = 𝑦)}) | 
| 2 |   | fveq2 5558 | 
. . . . . 6
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) | 
| 3 | 2 | eleq2d 2266 | 
. . . . 5
⊢ (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟) ↔ 𝑥 ∈ (Base‘𝑅))) | 
| 4 |   | fveq2 5558 | 
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (.r‘𝑟) = (.r‘𝑅)) | 
| 5 | 4 | oveqd 5939 | 
. . . . . . 7
⊢ (𝑟 = 𝑅 → (𝑧(.r‘𝑟)𝑥) = (𝑧(.r‘𝑅)𝑥)) | 
| 6 | 5 | eqeq1d 2205 | 
. . . . . 6
⊢ (𝑟 = 𝑅 → ((𝑧(.r‘𝑟)𝑥) = 𝑦 ↔ (𝑧(.r‘𝑅)𝑥) = 𝑦)) | 
| 7 | 2, 6 | rexeqbidv 2710 | 
. . . . 5
⊢ (𝑟 = 𝑅 → (∃𝑧 ∈ (Base‘𝑟)(𝑧(.r‘𝑟)𝑥) = 𝑦 ↔ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)) | 
| 8 | 3, 7 | anbi12d 473 | 
. . . 4
⊢ (𝑟 = 𝑅 → ((𝑥 ∈ (Base‘𝑟) ∧ ∃𝑧 ∈ (Base‘𝑟)(𝑧(.r‘𝑟)𝑥) = 𝑦) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦))) | 
| 9 | 8 | opabbidv 4099 | 
. . 3
⊢ (𝑟 = 𝑅 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑟) ∧ ∃𝑧 ∈ (Base‘𝑟)(𝑧(.r‘𝑟)𝑥) = 𝑦)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)}) | 
| 10 |   | dvdsrvald.r | 
. . . 4
⊢ (𝜑 → 𝑅 ∈ SRing) | 
| 11 | 10 | elexd 2776 | 
. . 3
⊢ (𝜑 → 𝑅 ∈ V) | 
| 12 |   | basfn 12736 | 
. . . . . 6
⊢ Base Fn
V | 
| 13 |   | funfvex 5575 | 
. . . . . . 7
⊢ ((Fun
Base ∧ 𝑅 ∈ dom
Base) → (Base‘𝑅)
∈ V) | 
| 14 | 13 | funfni 5358 | 
. . . . . 6
⊢ ((Base Fn
V ∧ 𝑅 ∈ V) →
(Base‘𝑅) ∈
V) | 
| 15 | 12, 11, 14 | sylancr 414 | 
. . . . 5
⊢ (𝜑 → (Base‘𝑅) ∈ V) | 
| 16 |   | xpexg 4777 | 
. . . . 5
⊢
(((Base‘𝑅)
∈ V ∧ (Base‘𝑅) ∈ V) → ((Base‘𝑅) × (Base‘𝑅)) ∈ V) | 
| 17 | 15, 15, 16 | syl2anc 411 | 
. . . 4
⊢ (𝜑 → ((Base‘𝑅) × (Base‘𝑅)) ∈ V) | 
| 18 |   | simprr 531 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ (𝑧(.r‘𝑅)𝑥) = 𝑦)) → (𝑧(.r‘𝑅)𝑥) = 𝑦) | 
| 19 | 10 | ad2antrr 488 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ (𝑧(.r‘𝑅)𝑥) = 𝑦)) → 𝑅 ∈ SRing) | 
| 20 |   | simprl 529 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ (𝑧(.r‘𝑅)𝑥) = 𝑦)) → 𝑧 ∈ (Base‘𝑅)) | 
| 21 |   | simplr 528 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ (𝑧(.r‘𝑅)𝑥) = 𝑦)) → 𝑥 ∈ (Base‘𝑅)) | 
| 22 |   | eqid 2196 | 
. . . . . . . . . . 11
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 23 |   | eqid 2196 | 
. . . . . . . . . . 11
⊢
(.r‘𝑅) = (.r‘𝑅) | 
| 24 | 22, 23 | srgcl 13526 | 
. . . . . . . . . 10
⊢ ((𝑅 ∈ SRing ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑧(.r‘𝑅)𝑥) ∈ (Base‘𝑅)) | 
| 25 | 19, 20, 21, 24 | syl3anc 1249 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ (𝑧(.r‘𝑅)𝑥) = 𝑦)) → (𝑧(.r‘𝑅)𝑥) ∈ (Base‘𝑅)) | 
| 26 | 18, 25 | eqeltrrd 2274 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ (𝑧(.r‘𝑅)𝑥) = 𝑦)) → 𝑦 ∈ (Base‘𝑅)) | 
| 27 | 26 | rexlimdvaa 2615 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → (∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦 → 𝑦 ∈ (Base‘𝑅))) | 
| 28 | 27 | imdistanda 448 | 
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦) → (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)))) | 
| 29 | 28 | ssopab2dv 4313 | 
. . . . 5
⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))}) | 
| 30 |   | df-xp 4669 | 
. . . . 5
⊢
((Base‘𝑅)
× (Base‘𝑅)) =
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))} | 
| 31 | 29, 30 | sseqtrrdi 3232 | 
. . . 4
⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)} ⊆ ((Base‘𝑅) × (Base‘𝑅))) | 
| 32 | 17, 31 | ssexd 4173 | 
. . 3
⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)} ∈ V) | 
| 33 | 1, 9, 11, 32 | fvmptd3 5655 | 
. 2
⊢ (𝜑 →
(∥r‘𝑅) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)}) | 
| 34 |   | dvdsrvald.2 | 
. 2
⊢ (𝜑 → ∥ =
(∥r‘𝑅)) | 
| 35 |   | dvdsrvald.1 | 
. . . . 5
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | 
| 36 | 35 | eleq2d 2266 | 
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Base‘𝑅))) | 
| 37 |   | dvdsrvald.3 | 
. . . . . . 7
⊢ (𝜑 → · =
(.r‘𝑅)) | 
| 38 | 37 | oveqd 5939 | 
. . . . . 6
⊢ (𝜑 → (𝑧 · 𝑥) = (𝑧(.r‘𝑅)𝑥)) | 
| 39 | 38 | eqeq1d 2205 | 
. . . . 5
⊢ (𝜑 → ((𝑧 · 𝑥) = 𝑦 ↔ (𝑧(.r‘𝑅)𝑥) = 𝑦)) | 
| 40 | 35, 39 | rexeqbidv 2710 | 
. . . 4
⊢ (𝜑 → (∃𝑧 ∈ 𝐵 (𝑧 · 𝑥) = 𝑦 ↔ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)) | 
| 41 | 36, 40 | anbi12d 473 | 
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑥) = 𝑦) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦))) | 
| 42 | 41 | opabbidv 4099 | 
. 2
⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑥) = 𝑦)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)}) | 
| 43 | 33, 34, 42 | 3eqtr4d 2239 | 
1
⊢ (𝜑 → ∥ = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑥) = 𝑦)}) |