ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsrvald GIF version

Theorem dvdsrvald 13592
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
dvdsrvald.1 (𝜑𝐵 = (Base‘𝑅))
dvdsrvald.2 (𝜑 = (∥r𝑅))
dvdsrvald.r (𝜑𝑅 ∈ SRing)
dvdsrvald.3 (𝜑· = (.r𝑅))
Assertion
Ref Expression
dvdsrvald (𝜑 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)})
Distinct variable groups:   𝑥,𝑦,   𝑥,𝑧,𝐵,𝑦   𝑥,𝑅,𝑦,𝑧   𝑥, · ,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hint:   (𝑧)

Proof of Theorem dvdsrvald
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 df-dvdsr 13588 . . 3 r = (𝑟 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑟) ∧ ∃𝑧 ∈ (Base‘𝑟)(𝑧(.r𝑟)𝑥) = 𝑦)})
2 fveq2 5555 . . . . . 6 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
32eleq2d 2263 . . . . 5 (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟) ↔ 𝑥 ∈ (Base‘𝑅)))
4 fveq2 5555 . . . . . . . 8 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
54oveqd 5936 . . . . . . 7 (𝑟 = 𝑅 → (𝑧(.r𝑟)𝑥) = (𝑧(.r𝑅)𝑥))
65eqeq1d 2202 . . . . . 6 (𝑟 = 𝑅 → ((𝑧(.r𝑟)𝑥) = 𝑦 ↔ (𝑧(.r𝑅)𝑥) = 𝑦))
72, 6rexeqbidv 2707 . . . . 5 (𝑟 = 𝑅 → (∃𝑧 ∈ (Base‘𝑟)(𝑧(.r𝑟)𝑥) = 𝑦 ↔ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦))
83, 7anbi12d 473 . . . 4 (𝑟 = 𝑅 → ((𝑥 ∈ (Base‘𝑟) ∧ ∃𝑧 ∈ (Base‘𝑟)(𝑧(.r𝑟)𝑥) = 𝑦) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)))
98opabbidv 4096 . . 3 (𝑟 = 𝑅 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑟) ∧ ∃𝑧 ∈ (Base‘𝑟)(𝑧(.r𝑟)𝑥) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)})
10 dvdsrvald.r . . . 4 (𝜑𝑅 ∈ SRing)
1110elexd 2773 . . 3 (𝜑𝑅 ∈ V)
12 basfn 12679 . . . . . 6 Base Fn V
13 funfvex 5572 . . . . . . 7 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
1413funfni 5355 . . . . . 6 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
1512, 11, 14sylancr 414 . . . . 5 (𝜑 → (Base‘𝑅) ∈ V)
16 xpexg 4774 . . . . 5 (((Base‘𝑅) ∈ V ∧ (Base‘𝑅) ∈ V) → ((Base‘𝑅) × (Base‘𝑅)) ∈ V)
1715, 15, 16syl2anc 411 . . . 4 (𝜑 → ((Base‘𝑅) × (Base‘𝑅)) ∈ V)
18 simprr 531 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ (𝑧(.r𝑅)𝑥) = 𝑦)) → (𝑧(.r𝑅)𝑥) = 𝑦)
1910ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ (𝑧(.r𝑅)𝑥) = 𝑦)) → 𝑅 ∈ SRing)
20 simprl 529 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ (𝑧(.r𝑅)𝑥) = 𝑦)) → 𝑧 ∈ (Base‘𝑅))
21 simplr 528 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ (𝑧(.r𝑅)𝑥) = 𝑦)) → 𝑥 ∈ (Base‘𝑅))
22 eqid 2193 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
23 eqid 2193 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
2422, 23srgcl 13469 . . . . . . . . . 10 ((𝑅 ∈ SRing ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑧(.r𝑅)𝑥) ∈ (Base‘𝑅))
2519, 20, 21, 24syl3anc 1249 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ (𝑧(.r𝑅)𝑥) = 𝑦)) → (𝑧(.r𝑅)𝑥) ∈ (Base‘𝑅))
2618, 25eqeltrrd 2271 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ (𝑧 ∈ (Base‘𝑅) ∧ (𝑧(.r𝑅)𝑥) = 𝑦)) → 𝑦 ∈ (Base‘𝑅))
2726rexlimdvaa 2612 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑅)) → (∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦𝑦 ∈ (Base‘𝑅)))
2827imdistanda 448 . . . . . 6 (𝜑 → ((𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦) → (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))))
2928ssopab2dv 4310 . . . . 5 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))})
30 df-xp 4666 . . . . 5 ((Base‘𝑅) × (Base‘𝑅)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))}
3129, 30sseqtrrdi 3229 . . . 4 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)} ⊆ ((Base‘𝑅) × (Base‘𝑅)))
3217, 31ssexd 4170 . . 3 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)} ∈ V)
331, 9, 11, 32fvmptd3 5652 . 2 (𝜑 → (∥r𝑅) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)})
34 dvdsrvald.2 . 2 (𝜑 = (∥r𝑅))
35 dvdsrvald.1 . . . . 5 (𝜑𝐵 = (Base‘𝑅))
3635eleq2d 2263 . . . 4 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝑅)))
37 dvdsrvald.3 . . . . . . 7 (𝜑· = (.r𝑅))
3837oveqd 5936 . . . . . 6 (𝜑 → (𝑧 · 𝑥) = (𝑧(.r𝑅)𝑥))
3938eqeq1d 2202 . . . . 5 (𝜑 → ((𝑧 · 𝑥) = 𝑦 ↔ (𝑧(.r𝑅)𝑥) = 𝑦))
4035, 39rexeqbidv 2707 . . . 4 (𝜑 → (∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦 ↔ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦))
4136, 40anbi12d 473 . . 3 (𝜑 → ((𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)))
4241opabbidv 4096 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)})
4333, 34, 423eqtr4d 2236 1 (𝜑 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wrex 2473  Vcvv 2760  {copab 4090   × cxp 4658   Fn wfn 5250  cfv 5255  (class class class)co 5919  Basecbs 12621  .rcmulr 12699  SRingcsrg 13462  rcdsr 13585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-mgp 13420  df-srg 13463  df-dvdsr 13588
This theorem is referenced by:  dvdsrd  13593  dvdsrex  13597  dvdsrpropdg  13646  dvdsrzring  14102
  Copyright terms: Public domain W3C validator