| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-dvdsr 13645 | 
. . . . 5
⊢
∥r = (𝑤 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r‘𝑤)𝑥) = 𝑦)}) | 
| 2 |   | fveq2 5558 | 
. . . . . . . 8
⊢ (𝑤 = 𝑅 → (Base‘𝑤) = (Base‘𝑅)) | 
| 3 | 2 | eleq2d 2266 | 
. . . . . . 7
⊢ (𝑤 = 𝑅 → (𝑥 ∈ (Base‘𝑤) ↔ 𝑥 ∈ (Base‘𝑅))) | 
| 4 |   | fveq2 5558 | 
. . . . . . . . . 10
⊢ (𝑤 = 𝑅 → (.r‘𝑤) = (.r‘𝑅)) | 
| 5 | 4 | oveqd 5939 | 
. . . . . . . . 9
⊢ (𝑤 = 𝑅 → (𝑧(.r‘𝑤)𝑥) = (𝑧(.r‘𝑅)𝑥)) | 
| 6 | 5 | eqeq1d 2205 | 
. . . . . . . 8
⊢ (𝑤 = 𝑅 → ((𝑧(.r‘𝑤)𝑥) = 𝑦 ↔ (𝑧(.r‘𝑅)𝑥) = 𝑦)) | 
| 7 | 2, 6 | rexeqbidv 2710 | 
. . . . . . 7
⊢ (𝑤 = 𝑅 → (∃𝑧 ∈ (Base‘𝑤)(𝑧(.r‘𝑤)𝑥) = 𝑦 ↔ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)) | 
| 8 | 3, 7 | anbi12d 473 | 
. . . . . 6
⊢ (𝑤 = 𝑅 → ((𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r‘𝑤)𝑥) = 𝑦) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦))) | 
| 9 | 8 | opabbidv 4099 | 
. . . . 5
⊢ (𝑤 = 𝑅 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r‘𝑤)𝑥) = 𝑦)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)}) | 
| 10 |   | elex 2774 | 
. . . . 5
⊢ (𝑅 ∈ SRing → 𝑅 ∈ V) | 
| 11 |   | basfn 12736 | 
. . . . . . . 8
⊢ Base Fn
V | 
| 12 |   | funfvex 5575 | 
. . . . . . . . 9
⊢ ((Fun
Base ∧ 𝑅 ∈ dom
Base) → (Base‘𝑅)
∈ V) | 
| 13 | 12 | funfni 5358 | 
. . . . . . . 8
⊢ ((Base Fn
V ∧ 𝑅 ∈ V) →
(Base‘𝑅) ∈
V) | 
| 14 | 11, 10, 13 | sylancr 414 | 
. . . . . . 7
⊢ (𝑅 ∈ SRing →
(Base‘𝑅) ∈
V) | 
| 15 |   | xpexg 4777 | 
. . . . . . 7
⊢
(((Base‘𝑅)
∈ V ∧ (Base‘𝑅) ∈ V) → ((Base‘𝑅) × (Base‘𝑅)) ∈ V) | 
| 16 | 14, 14, 15 | syl2anc 411 | 
. . . . . 6
⊢ (𝑅 ∈ SRing →
((Base‘𝑅) ×
(Base‘𝑅)) ∈
V) | 
| 17 |   | simpr 110 | 
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r‘𝑅)𝑥) = 𝑦) → (𝑧(.r‘𝑅)𝑥) = 𝑦) | 
| 18 |   | simplll 533 | 
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r‘𝑅)𝑥) = 𝑦) → 𝑅 ∈ SRing) | 
| 19 |   | simplr 528 | 
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r‘𝑅)𝑥) = 𝑦) → 𝑧 ∈ (Base‘𝑅)) | 
| 20 |   | simpllr 534 | 
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r‘𝑅)𝑥) = 𝑦) → 𝑥 ∈ (Base‘𝑅)) | 
| 21 |   | eqid 2196 | 
. . . . . . . . . . . . 13
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 22 |   | eqid 2196 | 
. . . . . . . . . . . . 13
⊢
(.r‘𝑅) = (.r‘𝑅) | 
| 23 | 21, 22 | srgcl 13526 | 
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ SRing ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑧(.r‘𝑅)𝑥) ∈ (Base‘𝑅)) | 
| 24 | 18, 19, 20, 23 | syl3anc 1249 | 
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r‘𝑅)𝑥) = 𝑦) → (𝑧(.r‘𝑅)𝑥) ∈ (Base‘𝑅)) | 
| 25 | 17, 24 | eqeltrrd 2274 | 
. . . . . . . . . 10
⊢ ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r‘𝑅)𝑥) = 𝑦) → 𝑦 ∈ (Base‘𝑅)) | 
| 26 | 25 | rexlimdva2 2617 | 
. . . . . . . . 9
⊢ ((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) → (∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦 → 𝑦 ∈ (Base‘𝑅))) | 
| 27 | 26 | imdistanda 448 | 
. . . . . . . 8
⊢ (𝑅 ∈ SRing → ((𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦) → (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)))) | 
| 28 | 27 | ssopab2dv 4313 | 
. . . . . . 7
⊢ (𝑅 ∈ SRing →
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))}) | 
| 29 |   | df-xp 4669 | 
. . . . . . 7
⊢
((Base‘𝑅)
× (Base‘𝑅)) =
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))} | 
| 30 | 28, 29 | sseqtrrdi 3232 | 
. . . . . 6
⊢ (𝑅 ∈ SRing →
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)} ⊆ ((Base‘𝑅) × (Base‘𝑅))) | 
| 31 | 16, 30 | ssexd 4173 | 
. . . . 5
⊢ (𝑅 ∈ SRing →
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)} ∈ V) | 
| 32 | 1, 9, 10, 31 | fvmptd3 5655 | 
. . . 4
⊢ (𝑅 ∈ SRing →
(∥r‘𝑅) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)}) | 
| 33 | 32, 30 | eqsstrd 3219 | 
. . 3
⊢ (𝑅 ∈ SRing →
(∥r‘𝑅) ⊆ ((Base‘𝑅) × (Base‘𝑅))) | 
| 34 |   | xpss 4771 | 
. . 3
⊢
((Base‘𝑅)
× (Base‘𝑅))
⊆ (V × V) | 
| 35 | 33, 34 | sstrdi 3195 | 
. 2
⊢ (𝑅 ∈ SRing →
(∥r‘𝑅) ⊆ (V × V)) | 
| 36 |   | df-rel 4670 | 
. 2
⊢ (Rel
(∥r‘𝑅) ↔ (∥r‘𝑅) ⊆ (V ×
V)) | 
| 37 | 35, 36 | sylibr 134 | 
1
⊢ (𝑅 ∈ SRing → Rel
(∥r‘𝑅)) |