ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldvdsrsrg GIF version

Theorem reldvdsrsrg 13898
Description: The divides relation is a relation. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2025.)
Assertion
Ref Expression
reldvdsrsrg (𝑅 ∈ SRing → Rel (∥r𝑅))

Proof of Theorem reldvdsrsrg
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dvdsr 13895 . . . . 5 r = (𝑤 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r𝑤)𝑥) = 𝑦)})
2 fveq2 5583 . . . . . . . 8 (𝑤 = 𝑅 → (Base‘𝑤) = (Base‘𝑅))
32eleq2d 2276 . . . . . . 7 (𝑤 = 𝑅 → (𝑥 ∈ (Base‘𝑤) ↔ 𝑥 ∈ (Base‘𝑅)))
4 fveq2 5583 . . . . . . . . . 10 (𝑤 = 𝑅 → (.r𝑤) = (.r𝑅))
54oveqd 5968 . . . . . . . . 9 (𝑤 = 𝑅 → (𝑧(.r𝑤)𝑥) = (𝑧(.r𝑅)𝑥))
65eqeq1d 2215 . . . . . . . 8 (𝑤 = 𝑅 → ((𝑧(.r𝑤)𝑥) = 𝑦 ↔ (𝑧(.r𝑅)𝑥) = 𝑦))
72, 6rexeqbidv 2720 . . . . . . 7 (𝑤 = 𝑅 → (∃𝑧 ∈ (Base‘𝑤)(𝑧(.r𝑤)𝑥) = 𝑦 ↔ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦))
83, 7anbi12d 473 . . . . . 6 (𝑤 = 𝑅 → ((𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r𝑤)𝑥) = 𝑦) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)))
98opabbidv 4114 . . . . 5 (𝑤 = 𝑅 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r𝑤)𝑥) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)})
10 elex 2784 . . . . 5 (𝑅 ∈ SRing → 𝑅 ∈ V)
11 basfn 12934 . . . . . . . 8 Base Fn V
12 funfvex 5600 . . . . . . . . 9 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
1312funfni 5381 . . . . . . . 8 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
1411, 10, 13sylancr 414 . . . . . . 7 (𝑅 ∈ SRing → (Base‘𝑅) ∈ V)
15 xpexg 4793 . . . . . . 7 (((Base‘𝑅) ∈ V ∧ (Base‘𝑅) ∈ V) → ((Base‘𝑅) × (Base‘𝑅)) ∈ V)
1614, 14, 15syl2anc 411 . . . . . 6 (𝑅 ∈ SRing → ((Base‘𝑅) × (Base‘𝑅)) ∈ V)
17 simpr 110 . . . . . . . . . . 11 ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r𝑅)𝑥) = 𝑦) → (𝑧(.r𝑅)𝑥) = 𝑦)
18 simplll 533 . . . . . . . . . . . 12 ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r𝑅)𝑥) = 𝑦) → 𝑅 ∈ SRing)
19 simplr 528 . . . . . . . . . . . 12 ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r𝑅)𝑥) = 𝑦) → 𝑧 ∈ (Base‘𝑅))
20 simpllr 534 . . . . . . . . . . . 12 ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r𝑅)𝑥) = 𝑦) → 𝑥 ∈ (Base‘𝑅))
21 eqid 2206 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑅)
22 eqid 2206 . . . . . . . . . . . . 13 (.r𝑅) = (.r𝑅)
2321, 22srgcl 13776 . . . . . . . . . . . 12 ((𝑅 ∈ SRing ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑧(.r𝑅)𝑥) ∈ (Base‘𝑅))
2418, 19, 20, 23syl3anc 1250 . . . . . . . . . . 11 ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r𝑅)𝑥) = 𝑦) → (𝑧(.r𝑅)𝑥) ∈ (Base‘𝑅))
2517, 24eqeltrrd 2284 . . . . . . . . . 10 ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r𝑅)𝑥) = 𝑦) → 𝑦 ∈ (Base‘𝑅))
2625rexlimdva2 2627 . . . . . . . . 9 ((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) → (∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦𝑦 ∈ (Base‘𝑅)))
2726imdistanda 448 . . . . . . . 8 (𝑅 ∈ SRing → ((𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦) → (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))))
2827ssopab2dv 4329 . . . . . . 7 (𝑅 ∈ SRing → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))})
29 df-xp 4685 . . . . . . 7 ((Base‘𝑅) × (Base‘𝑅)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))}
3028, 29sseqtrrdi 3243 . . . . . 6 (𝑅 ∈ SRing → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)} ⊆ ((Base‘𝑅) × (Base‘𝑅)))
3116, 30ssexd 4188 . . . . 5 (𝑅 ∈ SRing → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)} ∈ V)
321, 9, 10, 31fvmptd3 5680 . . . 4 (𝑅 ∈ SRing → (∥r𝑅) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)})
3332, 30eqsstrd 3230 . . 3 (𝑅 ∈ SRing → (∥r𝑅) ⊆ ((Base‘𝑅) × (Base‘𝑅)))
34 xpss 4787 . . 3 ((Base‘𝑅) × (Base‘𝑅)) ⊆ (V × V)
3533, 34sstrdi 3206 . 2 (𝑅 ∈ SRing → (∥r𝑅) ⊆ (V × V))
36 df-rel 4686 . 2 (Rel (∥r𝑅) ↔ (∥r𝑅) ⊆ (V × V))
3735, 36sylibr 134 1 (𝑅 ∈ SRing → Rel (∥r𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wrex 2486  Vcvv 2773  wss 3167  {copab 4108   × cxp 4677  Rel wrel 4684   Fn wfn 5271  cfv 5276  (class class class)co 5951  Basecbs 12876  .rcmulr 12954  SRingcsrg 13769  rcdsr 13892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-pre-ltirr 8044  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-iota 5237  df-fun 5278  df-fn 5279  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-pnf 8116  df-mnf 8117  df-ltxr 8119  df-inn 9044  df-2 9102  df-3 9103  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-plusg 12966  df-mulr 12967  df-0g 13134  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-mgp 13727  df-srg 13770  df-dvdsr 13895
This theorem is referenced by:  dvdsrd  13900  isunitd  13912  subrgdvds  14041
  Copyright terms: Public domain W3C validator