Step | Hyp | Ref
| Expression |
1 | | df-dvdsr 13256 |
. . . . 5
⊢
∥r = (𝑤 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r‘𝑤)𝑥) = 𝑦)}) |
2 | | fveq2 5515 |
. . . . . . . 8
⊢ (𝑤 = 𝑅 → (Base‘𝑤) = (Base‘𝑅)) |
3 | 2 | eleq2d 2247 |
. . . . . . 7
⊢ (𝑤 = 𝑅 → (𝑥 ∈ (Base‘𝑤) ↔ 𝑥 ∈ (Base‘𝑅))) |
4 | | fveq2 5515 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑅 → (.r‘𝑤) = (.r‘𝑅)) |
5 | 4 | oveqd 5891 |
. . . . . . . . 9
⊢ (𝑤 = 𝑅 → (𝑧(.r‘𝑤)𝑥) = (𝑧(.r‘𝑅)𝑥)) |
6 | 5 | eqeq1d 2186 |
. . . . . . . 8
⊢ (𝑤 = 𝑅 → ((𝑧(.r‘𝑤)𝑥) = 𝑦 ↔ (𝑧(.r‘𝑅)𝑥) = 𝑦)) |
7 | 2, 6 | rexeqbidv 2685 |
. . . . . . 7
⊢ (𝑤 = 𝑅 → (∃𝑧 ∈ (Base‘𝑤)(𝑧(.r‘𝑤)𝑥) = 𝑦 ↔ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)) |
8 | 3, 7 | anbi12d 473 |
. . . . . 6
⊢ (𝑤 = 𝑅 → ((𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r‘𝑤)𝑥) = 𝑦) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦))) |
9 | 8 | opabbidv 4069 |
. . . . 5
⊢ (𝑤 = 𝑅 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r‘𝑤)𝑥) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)}) |
10 | | elex 2748 |
. . . . 5
⊢ (𝑅 ∈ SRing → 𝑅 ∈ V) |
11 | | basfn 12519 |
. . . . . . . 8
⊢ Base Fn
V |
12 | | funfvex 5532 |
. . . . . . . . 9
⊢ ((Fun
Base ∧ 𝑅 ∈ dom
Base) → (Base‘𝑅)
∈ V) |
13 | 12 | funfni 5316 |
. . . . . . . 8
⊢ ((Base Fn
V ∧ 𝑅 ∈ V) →
(Base‘𝑅) ∈
V) |
14 | 11, 10, 13 | sylancr 414 |
. . . . . . 7
⊢ (𝑅 ∈ SRing →
(Base‘𝑅) ∈
V) |
15 | | xpexg 4740 |
. . . . . . 7
⊢
(((Base‘𝑅)
∈ V ∧ (Base‘𝑅) ∈ V) → ((Base‘𝑅) × (Base‘𝑅)) ∈ V) |
16 | 14, 14, 15 | syl2anc 411 |
. . . . . 6
⊢ (𝑅 ∈ SRing →
((Base‘𝑅) ×
(Base‘𝑅)) ∈
V) |
17 | | simpr 110 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r‘𝑅)𝑥) = 𝑦) → (𝑧(.r‘𝑅)𝑥) = 𝑦) |
18 | | simplll 533 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r‘𝑅)𝑥) = 𝑦) → 𝑅 ∈ SRing) |
19 | | simplr 528 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r‘𝑅)𝑥) = 𝑦) → 𝑧 ∈ (Base‘𝑅)) |
20 | | simpllr 534 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r‘𝑅)𝑥) = 𝑦) → 𝑥 ∈ (Base‘𝑅)) |
21 | | eqid 2177 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑅) =
(Base‘𝑅) |
22 | | eqid 2177 |
. . . . . . . . . . . . 13
⊢
(.r‘𝑅) = (.r‘𝑅) |
23 | 21, 22 | srgcl 13151 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ SRing ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑧(.r‘𝑅)𝑥) ∈ (Base‘𝑅)) |
24 | 18, 19, 20, 23 | syl3anc 1238 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r‘𝑅)𝑥) = 𝑦) → (𝑧(.r‘𝑅)𝑥) ∈ (Base‘𝑅)) |
25 | 17, 24 | eqeltrrd 2255 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r‘𝑅)𝑥) = 𝑦) → 𝑦 ∈ (Base‘𝑅)) |
26 | 25 | rexlimdva2 2597 |
. . . . . . . . 9
⊢ ((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) → (∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦 → 𝑦 ∈ (Base‘𝑅))) |
27 | 26 | imdistanda 448 |
. . . . . . . 8
⊢ (𝑅 ∈ SRing → ((𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦) → (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)))) |
28 | 27 | ssopab2dv 4278 |
. . . . . . 7
⊢ (𝑅 ∈ SRing →
{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))}) |
29 | | df-xp 4632 |
. . . . . . 7
⊢
((Base‘𝑅)
× (Base‘𝑅)) =
{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))} |
30 | 28, 29 | sseqtrrdi 3204 |
. . . . . 6
⊢ (𝑅 ∈ SRing →
{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)} ⊆ ((Base‘𝑅) × (Base‘𝑅))) |
31 | 16, 30 | ssexd 4143 |
. . . . 5
⊢ (𝑅 ∈ SRing →
{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)} ∈ V) |
32 | 1, 9, 10, 31 | fvmptd3 5609 |
. . . 4
⊢ (𝑅 ∈ SRing →
(∥r‘𝑅) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)}) |
33 | 32, 30 | eqsstrd 3191 |
. . 3
⊢ (𝑅 ∈ SRing →
(∥r‘𝑅) ⊆ ((Base‘𝑅) × (Base‘𝑅))) |
34 | | xpss 4734 |
. . 3
⊢
((Base‘𝑅)
× (Base‘𝑅))
⊆ (V × V) |
35 | 33, 34 | sstrdi 3167 |
. 2
⊢ (𝑅 ∈ SRing →
(∥r‘𝑅) ⊆ (V × V)) |
36 | | df-rel 4633 |
. 2
⊢ (Rel
(∥r‘𝑅) ↔ (∥r‘𝑅) ⊆ (V ×
V)) |
37 | 35, 36 | sylibr 134 |
1
⊢ (𝑅 ∈ SRing → Rel
(∥r‘𝑅)) |