ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldvdsrsrg GIF version

Theorem reldvdsrsrg 13259
Description: The divides relation is a relation. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2025.)
Assertion
Ref Expression
reldvdsrsrg (𝑅 ∈ SRing → Rel (∥r𝑅))

Proof of Theorem reldvdsrsrg
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dvdsr 13256 . . . . 5 r = (𝑤 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r𝑤)𝑥) = 𝑦)})
2 fveq2 5515 . . . . . . . 8 (𝑤 = 𝑅 → (Base‘𝑤) = (Base‘𝑅))
32eleq2d 2247 . . . . . . 7 (𝑤 = 𝑅 → (𝑥 ∈ (Base‘𝑤) ↔ 𝑥 ∈ (Base‘𝑅)))
4 fveq2 5515 . . . . . . . . . 10 (𝑤 = 𝑅 → (.r𝑤) = (.r𝑅))
54oveqd 5891 . . . . . . . . 9 (𝑤 = 𝑅 → (𝑧(.r𝑤)𝑥) = (𝑧(.r𝑅)𝑥))
65eqeq1d 2186 . . . . . . . 8 (𝑤 = 𝑅 → ((𝑧(.r𝑤)𝑥) = 𝑦 ↔ (𝑧(.r𝑅)𝑥) = 𝑦))
72, 6rexeqbidv 2685 . . . . . . 7 (𝑤 = 𝑅 → (∃𝑧 ∈ (Base‘𝑤)(𝑧(.r𝑤)𝑥) = 𝑦 ↔ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦))
83, 7anbi12d 473 . . . . . 6 (𝑤 = 𝑅 → ((𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r𝑤)𝑥) = 𝑦) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)))
98opabbidv 4069 . . . . 5 (𝑤 = 𝑅 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r𝑤)𝑥) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)})
10 elex 2748 . . . . 5 (𝑅 ∈ SRing → 𝑅 ∈ V)
11 basfn 12519 . . . . . . . 8 Base Fn V
12 funfvex 5532 . . . . . . . . 9 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
1312funfni 5316 . . . . . . . 8 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
1411, 10, 13sylancr 414 . . . . . . 7 (𝑅 ∈ SRing → (Base‘𝑅) ∈ V)
15 xpexg 4740 . . . . . . 7 (((Base‘𝑅) ∈ V ∧ (Base‘𝑅) ∈ V) → ((Base‘𝑅) × (Base‘𝑅)) ∈ V)
1614, 14, 15syl2anc 411 . . . . . 6 (𝑅 ∈ SRing → ((Base‘𝑅) × (Base‘𝑅)) ∈ V)
17 simpr 110 . . . . . . . . . . 11 ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r𝑅)𝑥) = 𝑦) → (𝑧(.r𝑅)𝑥) = 𝑦)
18 simplll 533 . . . . . . . . . . . 12 ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r𝑅)𝑥) = 𝑦) → 𝑅 ∈ SRing)
19 simplr 528 . . . . . . . . . . . 12 ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r𝑅)𝑥) = 𝑦) → 𝑧 ∈ (Base‘𝑅))
20 simpllr 534 . . . . . . . . . . . 12 ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r𝑅)𝑥) = 𝑦) → 𝑥 ∈ (Base‘𝑅))
21 eqid 2177 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑅)
22 eqid 2177 . . . . . . . . . . . . 13 (.r𝑅) = (.r𝑅)
2321, 22srgcl 13151 . . . . . . . . . . . 12 ((𝑅 ∈ SRing ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑧(.r𝑅)𝑥) ∈ (Base‘𝑅))
2418, 19, 20, 23syl3anc 1238 . . . . . . . . . . 11 ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r𝑅)𝑥) = 𝑦) → (𝑧(.r𝑅)𝑥) ∈ (Base‘𝑅))
2517, 24eqeltrrd 2255 . . . . . . . . . 10 ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r𝑅)𝑥) = 𝑦) → 𝑦 ∈ (Base‘𝑅))
2625rexlimdva2 2597 . . . . . . . . 9 ((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) → (∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦𝑦 ∈ (Base‘𝑅)))
2726imdistanda 448 . . . . . . . 8 (𝑅 ∈ SRing → ((𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦) → (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))))
2827ssopab2dv 4278 . . . . . . 7 (𝑅 ∈ SRing → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))})
29 df-xp 4632 . . . . . . 7 ((Base‘𝑅) × (Base‘𝑅)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))}
3028, 29sseqtrrdi 3204 . . . . . 6 (𝑅 ∈ SRing → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)} ⊆ ((Base‘𝑅) × (Base‘𝑅)))
3116, 30ssexd 4143 . . . . 5 (𝑅 ∈ SRing → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)} ∈ V)
321, 9, 10, 31fvmptd3 5609 . . . 4 (𝑅 ∈ SRing → (∥r𝑅) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)})
3332, 30eqsstrd 3191 . . 3 (𝑅 ∈ SRing → (∥r𝑅) ⊆ ((Base‘𝑅) × (Base‘𝑅)))
34 xpss 4734 . . 3 ((Base‘𝑅) × (Base‘𝑅)) ⊆ (V × V)
3533, 34sstrdi 3167 . 2 (𝑅 ∈ SRing → (∥r𝑅) ⊆ (V × V))
36 df-rel 4633 . 2 (Rel (∥r𝑅) ↔ (∥r𝑅) ⊆ (V × V))
3735, 36sylibr 134 1 (𝑅 ∈ SRing → Rel (∥r𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wrex 2456  Vcvv 2737  wss 3129  {copab 4063   × cxp 4624  Rel wrel 4631   Fn wfn 5211  cfv 5216  (class class class)co 5874  Basecbs 12461  .rcmulr 12536  SRingcsrg 13144  rcdsr 13253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-addass 7912  ax-i2m1 7915  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-pre-ltirr 7922  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-iota 5178  df-fun 5218  df-fn 5219  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-pnf 7993  df-mnf 7994  df-ltxr 7996  df-inn 8919  df-2 8977  df-3 8978  df-ndx 12464  df-slot 12465  df-base 12467  df-sets 12468  df-plusg 12548  df-mulr 12549  df-0g 12706  df-mgm 12774  df-sgrp 12807  df-mnd 12817  df-mgp 13129  df-srg 13145  df-dvdsr 13256
This theorem is referenced by:  dvdsrd  13261  isunitd  13273  subrgdvds  13354
  Copyright terms: Public domain W3C validator