ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldvdsrsrg GIF version

Theorem reldvdsrsrg 13324
Description: The divides relation is a relation. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2025.)
Assertion
Ref Expression
reldvdsrsrg (𝑅 ∈ SRing → Rel (∥r𝑅))

Proof of Theorem reldvdsrsrg
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dvdsr 13321 . . . . 5 r = (𝑤 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r𝑤)𝑥) = 𝑦)})
2 fveq2 5527 . . . . . . . 8 (𝑤 = 𝑅 → (Base‘𝑤) = (Base‘𝑅))
32eleq2d 2257 . . . . . . 7 (𝑤 = 𝑅 → (𝑥 ∈ (Base‘𝑤) ↔ 𝑥 ∈ (Base‘𝑅)))
4 fveq2 5527 . . . . . . . . . 10 (𝑤 = 𝑅 → (.r𝑤) = (.r𝑅))
54oveqd 5905 . . . . . . . . 9 (𝑤 = 𝑅 → (𝑧(.r𝑤)𝑥) = (𝑧(.r𝑅)𝑥))
65eqeq1d 2196 . . . . . . . 8 (𝑤 = 𝑅 → ((𝑧(.r𝑤)𝑥) = 𝑦 ↔ (𝑧(.r𝑅)𝑥) = 𝑦))
72, 6rexeqbidv 2696 . . . . . . 7 (𝑤 = 𝑅 → (∃𝑧 ∈ (Base‘𝑤)(𝑧(.r𝑤)𝑥) = 𝑦 ↔ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦))
83, 7anbi12d 473 . . . . . 6 (𝑤 = 𝑅 → ((𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r𝑤)𝑥) = 𝑦) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)))
98opabbidv 4081 . . . . 5 (𝑤 = 𝑅 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r𝑤)𝑥) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)})
10 elex 2760 . . . . 5 (𝑅 ∈ SRing → 𝑅 ∈ V)
11 basfn 12533 . . . . . . . 8 Base Fn V
12 funfvex 5544 . . . . . . . . 9 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
1312funfni 5328 . . . . . . . 8 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
1411, 10, 13sylancr 414 . . . . . . 7 (𝑅 ∈ SRing → (Base‘𝑅) ∈ V)
15 xpexg 4752 . . . . . . 7 (((Base‘𝑅) ∈ V ∧ (Base‘𝑅) ∈ V) → ((Base‘𝑅) × (Base‘𝑅)) ∈ V)
1614, 14, 15syl2anc 411 . . . . . 6 (𝑅 ∈ SRing → ((Base‘𝑅) × (Base‘𝑅)) ∈ V)
17 simpr 110 . . . . . . . . . . 11 ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r𝑅)𝑥) = 𝑦) → (𝑧(.r𝑅)𝑥) = 𝑦)
18 simplll 533 . . . . . . . . . . . 12 ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r𝑅)𝑥) = 𝑦) → 𝑅 ∈ SRing)
19 simplr 528 . . . . . . . . . . . 12 ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r𝑅)𝑥) = 𝑦) → 𝑧 ∈ (Base‘𝑅))
20 simpllr 534 . . . . . . . . . . . 12 ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r𝑅)𝑥) = 𝑦) → 𝑥 ∈ (Base‘𝑅))
21 eqid 2187 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑅)
22 eqid 2187 . . . . . . . . . . . . 13 (.r𝑅) = (.r𝑅)
2321, 22srgcl 13207 . . . . . . . . . . . 12 ((𝑅 ∈ SRing ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑧(.r𝑅)𝑥) ∈ (Base‘𝑅))
2418, 19, 20, 23syl3anc 1248 . . . . . . . . . . 11 ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r𝑅)𝑥) = 𝑦) → (𝑧(.r𝑅)𝑥) ∈ (Base‘𝑅))
2517, 24eqeltrrd 2265 . . . . . . . . . 10 ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r𝑅)𝑥) = 𝑦) → 𝑦 ∈ (Base‘𝑅))
2625rexlimdva2 2607 . . . . . . . . 9 ((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) → (∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦𝑦 ∈ (Base‘𝑅)))
2726imdistanda 448 . . . . . . . 8 (𝑅 ∈ SRing → ((𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦) → (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))))
2827ssopab2dv 4290 . . . . . . 7 (𝑅 ∈ SRing → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))})
29 df-xp 4644 . . . . . . 7 ((Base‘𝑅) × (Base‘𝑅)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))}
3028, 29sseqtrrdi 3216 . . . . . 6 (𝑅 ∈ SRing → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)} ⊆ ((Base‘𝑅) × (Base‘𝑅)))
3116, 30ssexd 4155 . . . . 5 (𝑅 ∈ SRing → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)} ∈ V)
321, 9, 10, 31fvmptd3 5622 . . . 4 (𝑅 ∈ SRing → (∥r𝑅) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)})
3332, 30eqsstrd 3203 . . 3 (𝑅 ∈ SRing → (∥r𝑅) ⊆ ((Base‘𝑅) × (Base‘𝑅)))
34 xpss 4746 . . 3 ((Base‘𝑅) × (Base‘𝑅)) ⊆ (V × V)
3533, 34sstrdi 3179 . 2 (𝑅 ∈ SRing → (∥r𝑅) ⊆ (V × V))
36 df-rel 4645 . 2 (Rel (∥r𝑅) ↔ (∥r𝑅) ⊆ (V × V))
3735, 36sylibr 134 1 (𝑅 ∈ SRing → Rel (∥r𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1363  wcel 2158  wrex 2466  Vcvv 2749  wss 3141  {copab 4075   × cxp 4636  Rel wrel 4643   Fn wfn 5223  cfv 5228  (class class class)co 5888  Basecbs 12475  .rcmulr 12551  SRingcsrg 13200  rcdsr 13318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-addcom 7924  ax-addass 7926  ax-i2m1 7929  ax-0lt1 7930  ax-0id 7932  ax-rnegex 7933  ax-pre-ltirr 7936  ax-pre-ltadd 7940
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-iota 5190  df-fun 5230  df-fn 5231  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8007  df-mnf 8008  df-ltxr 8010  df-inn 8933  df-2 8991  df-3 8992  df-ndx 12478  df-slot 12479  df-base 12481  df-sets 12482  df-plusg 12563  df-mulr 12564  df-0g 12724  df-mgm 12793  df-sgrp 12826  df-mnd 12837  df-mgp 13163  df-srg 13201  df-dvdsr 13321
This theorem is referenced by:  dvdsrd  13326  isunitd  13338  subrgdvds  13419
  Copyright terms: Public domain W3C validator