ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldvdsrsrg GIF version

Theorem reldvdsrsrg 13591
Description: The divides relation is a relation. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2025.)
Assertion
Ref Expression
reldvdsrsrg (𝑅 ∈ SRing → Rel (∥r𝑅))

Proof of Theorem reldvdsrsrg
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dvdsr 13588 . . . . 5 r = (𝑤 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r𝑤)𝑥) = 𝑦)})
2 fveq2 5555 . . . . . . . 8 (𝑤 = 𝑅 → (Base‘𝑤) = (Base‘𝑅))
32eleq2d 2263 . . . . . . 7 (𝑤 = 𝑅 → (𝑥 ∈ (Base‘𝑤) ↔ 𝑥 ∈ (Base‘𝑅)))
4 fveq2 5555 . . . . . . . . . 10 (𝑤 = 𝑅 → (.r𝑤) = (.r𝑅))
54oveqd 5936 . . . . . . . . 9 (𝑤 = 𝑅 → (𝑧(.r𝑤)𝑥) = (𝑧(.r𝑅)𝑥))
65eqeq1d 2202 . . . . . . . 8 (𝑤 = 𝑅 → ((𝑧(.r𝑤)𝑥) = 𝑦 ↔ (𝑧(.r𝑅)𝑥) = 𝑦))
72, 6rexeqbidv 2707 . . . . . . 7 (𝑤 = 𝑅 → (∃𝑧 ∈ (Base‘𝑤)(𝑧(.r𝑤)𝑥) = 𝑦 ↔ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦))
83, 7anbi12d 473 . . . . . 6 (𝑤 = 𝑅 → ((𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r𝑤)𝑥) = 𝑦) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)))
98opabbidv 4096 . . . . 5 (𝑤 = 𝑅 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r𝑤)𝑥) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)})
10 elex 2771 . . . . 5 (𝑅 ∈ SRing → 𝑅 ∈ V)
11 basfn 12679 . . . . . . . 8 Base Fn V
12 funfvex 5572 . . . . . . . . 9 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
1312funfni 5355 . . . . . . . 8 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
1411, 10, 13sylancr 414 . . . . . . 7 (𝑅 ∈ SRing → (Base‘𝑅) ∈ V)
15 xpexg 4774 . . . . . . 7 (((Base‘𝑅) ∈ V ∧ (Base‘𝑅) ∈ V) → ((Base‘𝑅) × (Base‘𝑅)) ∈ V)
1614, 14, 15syl2anc 411 . . . . . 6 (𝑅 ∈ SRing → ((Base‘𝑅) × (Base‘𝑅)) ∈ V)
17 simpr 110 . . . . . . . . . . 11 ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r𝑅)𝑥) = 𝑦) → (𝑧(.r𝑅)𝑥) = 𝑦)
18 simplll 533 . . . . . . . . . . . 12 ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r𝑅)𝑥) = 𝑦) → 𝑅 ∈ SRing)
19 simplr 528 . . . . . . . . . . . 12 ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r𝑅)𝑥) = 𝑦) → 𝑧 ∈ (Base‘𝑅))
20 simpllr 534 . . . . . . . . . . . 12 ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r𝑅)𝑥) = 𝑦) → 𝑥 ∈ (Base‘𝑅))
21 eqid 2193 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑅)
22 eqid 2193 . . . . . . . . . . . . 13 (.r𝑅) = (.r𝑅)
2321, 22srgcl 13469 . . . . . . . . . . . 12 ((𝑅 ∈ SRing ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑧(.r𝑅)𝑥) ∈ (Base‘𝑅))
2418, 19, 20, 23syl3anc 1249 . . . . . . . . . . 11 ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r𝑅)𝑥) = 𝑦) → (𝑧(.r𝑅)𝑥) ∈ (Base‘𝑅))
2517, 24eqeltrrd 2271 . . . . . . . . . 10 ((((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝑧(.r𝑅)𝑥) = 𝑦) → 𝑦 ∈ (Base‘𝑅))
2625rexlimdva2 2614 . . . . . . . . 9 ((𝑅 ∈ SRing ∧ 𝑥 ∈ (Base‘𝑅)) → (∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦𝑦 ∈ (Base‘𝑅)))
2726imdistanda 448 . . . . . . . 8 (𝑅 ∈ SRing → ((𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦) → (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))))
2827ssopab2dv 4310 . . . . . . 7 (𝑅 ∈ SRing → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))})
29 df-xp 4666 . . . . . . 7 ((Base‘𝑅) × (Base‘𝑅)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))}
3028, 29sseqtrrdi 3229 . . . . . 6 (𝑅 ∈ SRing → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)} ⊆ ((Base‘𝑅) × (Base‘𝑅)))
3116, 30ssexd 4170 . . . . 5 (𝑅 ∈ SRing → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)} ∈ V)
321, 9, 10, 31fvmptd3 5652 . . . 4 (𝑅 ∈ SRing → (∥r𝑅) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)})
3332, 30eqsstrd 3216 . . 3 (𝑅 ∈ SRing → (∥r𝑅) ⊆ ((Base‘𝑅) × (Base‘𝑅)))
34 xpss 4768 . . 3 ((Base‘𝑅) × (Base‘𝑅)) ⊆ (V × V)
3533, 34sstrdi 3192 . 2 (𝑅 ∈ SRing → (∥r𝑅) ⊆ (V × V))
36 df-rel 4667 . 2 (Rel (∥r𝑅) ↔ (∥r𝑅) ⊆ (V × V))
3735, 36sylibr 134 1 (𝑅 ∈ SRing → Rel (∥r𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wrex 2473  Vcvv 2760  wss 3154  {copab 4090   × cxp 4658  Rel wrel 4665   Fn wfn 5250  cfv 5255  (class class class)co 5919  Basecbs 12621  .rcmulr 12699  SRingcsrg 13462  rcdsr 13585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-mgp 13420  df-srg 13463  df-dvdsr 13588
This theorem is referenced by:  dvdsrd  13593  isunitd  13605  subrgdvds  13734
  Copyright terms: Public domain W3C validator