| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bren | GIF version | ||
| Description: Equinumerosity relation. (Contributed by NM, 15-Jun-1998.) |
| Ref | Expression |
|---|---|
| bren | ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | encv 6901 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 2 | f1ofn 5575 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓 Fn 𝐴) | |
| 3 | fndm 5420 | . . . . . 6 ⊢ (𝑓 Fn 𝐴 → dom 𝑓 = 𝐴) | |
| 4 | vex 2802 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
| 5 | 4 | dmex 4991 | . . . . . 6 ⊢ dom 𝑓 ∈ V |
| 6 | 3, 5 | eqeltrrdi 2321 | . . . . 5 ⊢ (𝑓 Fn 𝐴 → 𝐴 ∈ V) |
| 7 | 2, 6 | syl 14 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐴 ∈ V) |
| 8 | f1ofo 5581 | . . . . . 6 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴–onto→𝐵) | |
| 9 | forn 5553 | . . . . . 6 ⊢ (𝑓:𝐴–onto→𝐵 → ran 𝑓 = 𝐵) | |
| 10 | 8, 9 | syl 14 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → ran 𝑓 = 𝐵) |
| 11 | 4 | rnex 4992 | . . . . 5 ⊢ ran 𝑓 ∈ V |
| 12 | 10, 11 | eqeltrrdi 2321 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐵 ∈ V) |
| 13 | 7, 12 | jca 306 | . . 3 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 14 | 13 | exlimiv 1644 | . 2 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 15 | f1oeq2 5563 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑓:𝑥–1-1-onto→𝑦 ↔ 𝑓:𝐴–1-1-onto→𝑦)) | |
| 16 | 15 | exbidv 1871 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑓 𝑓:𝑥–1-1-onto→𝑦 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝑦)) |
| 17 | f1oeq3 5564 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑓:𝐴–1-1-onto→𝑦 ↔ 𝑓:𝐴–1-1-onto→𝐵)) | |
| 18 | 17 | exbidv 1871 | . . 3 ⊢ (𝑦 = 𝐵 → (∃𝑓 𝑓:𝐴–1-1-onto→𝑦 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) |
| 19 | df-en 6896 | . . 3 ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} | |
| 20 | 16, 18, 19 | brabg 4357 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) |
| 21 | 1, 14, 20 | pm5.21nii 709 | 1 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1395 ∃wex 1538 ∈ wcel 2200 Vcvv 2799 class class class wbr 4083 dom cdm 4719 ran crn 4720 Fn wfn 5313 –onto→wfo 5316 –1-1-onto→wf1o 5317 ≈ cen 6893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-rel 4726 df-cnv 4727 df-dm 4729 df-rn 4730 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-en 6896 |
| This theorem is referenced by: domen 6908 f1oen3g 6913 ener 6939 en0 6955 ensn1 6956 en1 6959 unen 6977 en2 6981 enm 6987 xpen 7014 mapen 7015 ssenen 7020 phplem4 7024 phplem4on 7037 fidceq 7039 dif1en 7049 fin0 7055 fin0or 7056 en2eqpr 7077 fiintim 7101 fidcenumlemim 7127 enomnilem 7313 enmkvlem 7336 enwomnilem 7344 pr2cv1 7376 cc3 7462 hasheqf1o 11015 hashfacen 11066 fz1f1o 11894 nninfct 12570 eulerth 12763 ennnfonelemim 13003 exmidunben 13005 ctinfom 13007 qnnen 13010 enctlem 13011 ctiunct 13019 exmidsbthrlem 16420 sbthom 16424 |
| Copyright terms: Public domain | W3C validator |