ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bren GIF version

Theorem bren 6806
Description: Equinumerosity relation. (Contributed by NM, 15-Jun-1998.)
Assertion
Ref Expression
bren (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem bren
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 encv 6805 . 2 (𝐴𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
2 f1ofn 5505 . . . . 5 (𝑓:𝐴1-1-onto𝐵𝑓 Fn 𝐴)
3 fndm 5357 . . . . . 6 (𝑓 Fn 𝐴 → dom 𝑓 = 𝐴)
4 vex 2766 . . . . . . 7 𝑓 ∈ V
54dmex 4932 . . . . . 6 dom 𝑓 ∈ V
63, 5eqeltrrdi 2288 . . . . 5 (𝑓 Fn 𝐴𝐴 ∈ V)
72, 6syl 14 . . . 4 (𝑓:𝐴1-1-onto𝐵𝐴 ∈ V)
8 f1ofo 5511 . . . . . 6 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴onto𝐵)
9 forn 5483 . . . . . 6 (𝑓:𝐴onto𝐵 → ran 𝑓 = 𝐵)
108, 9syl 14 . . . . 5 (𝑓:𝐴1-1-onto𝐵 → ran 𝑓 = 𝐵)
114rnex 4933 . . . . 5 ran 𝑓 ∈ V
1210, 11eqeltrrdi 2288 . . . 4 (𝑓:𝐴1-1-onto𝐵𝐵 ∈ V)
137, 12jca 306 . . 3 (𝑓:𝐴1-1-onto𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
1413exlimiv 1612 . 2 (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
15 f1oeq2 5493 . . . 4 (𝑥 = 𝐴 → (𝑓:𝑥1-1-onto𝑦𝑓:𝐴1-1-onto𝑦))
1615exbidv 1839 . . 3 (𝑥 = 𝐴 → (∃𝑓 𝑓:𝑥1-1-onto𝑦 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝑦))
17 f1oeq3 5494 . . . 4 (𝑦 = 𝐵 → (𝑓:𝐴1-1-onto𝑦𝑓:𝐴1-1-onto𝐵))
1817exbidv 1839 . . 3 (𝑦 = 𝐵 → (∃𝑓 𝑓:𝐴1-1-onto𝑦 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵))
19 df-en 6800 . . 3 ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
2016, 18, 19brabg 4303 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵))
211, 14, 20pm5.21nii 705 1 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wex 1506  wcel 2167  Vcvv 2763   class class class wbr 4033  dom cdm 4663  ran crn 4664   Fn wfn 5253  ontowfo 5256  1-1-ontowf1o 5257  cen 6797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-cnv 4671  df-dm 4673  df-rn 4674  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-en 6800
This theorem is referenced by:  domen  6810  f1oen3g  6813  ener  6838  en0  6854  ensn1  6855  en1  6858  unen  6875  enm  6879  xpen  6906  mapen  6907  ssenen  6912  phplem4  6916  phplem4on  6928  fidceq  6930  dif1en  6940  fin0  6946  fin0or  6947  en2eqpr  6968  fiintim  6992  fidcenumlemim  7018  enomnilem  7204  enmkvlem  7227  enwomnilem  7235  cc3  7335  hasheqf1o  10877  hashfacen  10928  fz1f1o  11540  nninfct  12208  eulerth  12401  ennnfonelemim  12641  exmidunben  12643  ctinfom  12645  qnnen  12648  enctlem  12649  ctiunct  12657  exmidsbthrlem  15666  sbthom  15670
  Copyright terms: Public domain W3C validator