| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > bren | GIF version | ||
| Description: Equinumerosity relation. (Contributed by NM, 15-Jun-1998.) | 
| Ref | Expression | 
|---|---|
| bren | ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | encv 6805 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 2 | f1ofn 5505 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓 Fn 𝐴) | |
| 3 | fndm 5357 | . . . . . 6 ⊢ (𝑓 Fn 𝐴 → dom 𝑓 = 𝐴) | |
| 4 | vex 2766 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
| 5 | 4 | dmex 4932 | . . . . . 6 ⊢ dom 𝑓 ∈ V | 
| 6 | 3, 5 | eqeltrrdi 2288 | . . . . 5 ⊢ (𝑓 Fn 𝐴 → 𝐴 ∈ V) | 
| 7 | 2, 6 | syl 14 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐴 ∈ V) | 
| 8 | f1ofo 5511 | . . . . . 6 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴–onto→𝐵) | |
| 9 | forn 5483 | . . . . . 6 ⊢ (𝑓:𝐴–onto→𝐵 → ran 𝑓 = 𝐵) | |
| 10 | 8, 9 | syl 14 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → ran 𝑓 = 𝐵) | 
| 11 | 4 | rnex 4933 | . . . . 5 ⊢ ran 𝑓 ∈ V | 
| 12 | 10, 11 | eqeltrrdi 2288 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐵 ∈ V) | 
| 13 | 7, 12 | jca 306 | . . 3 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | 
| 14 | 13 | exlimiv 1612 | . 2 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | 
| 15 | f1oeq2 5493 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑓:𝑥–1-1-onto→𝑦 ↔ 𝑓:𝐴–1-1-onto→𝑦)) | |
| 16 | 15 | exbidv 1839 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑓 𝑓:𝑥–1-1-onto→𝑦 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝑦)) | 
| 17 | f1oeq3 5494 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑓:𝐴–1-1-onto→𝑦 ↔ 𝑓:𝐴–1-1-onto→𝐵)) | |
| 18 | 17 | exbidv 1839 | . . 3 ⊢ (𝑦 = 𝐵 → (∃𝑓 𝑓:𝐴–1-1-onto→𝑦 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) | 
| 19 | df-en 6800 | . . 3 ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} | |
| 20 | 16, 18, 19 | brabg 4303 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) | 
| 21 | 1, 14, 20 | pm5.21nii 705 | 1 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 class class class wbr 4033 dom cdm 4663 ran crn 4664 Fn wfn 5253 –onto→wfo 5256 –1-1-onto→wf1o 5257 ≈ cen 6797 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 df-dm 4673 df-rn 4674 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-en 6800 | 
| This theorem is referenced by: domen 6810 f1oen3g 6813 ener 6838 en0 6854 ensn1 6855 en1 6858 unen 6875 enm 6879 xpen 6906 mapen 6907 ssenen 6912 phplem4 6916 phplem4on 6928 fidceq 6930 dif1en 6940 fin0 6946 fin0or 6947 en2eqpr 6968 fiintim 6992 fidcenumlemim 7018 enomnilem 7204 enmkvlem 7227 enwomnilem 7235 cc3 7335 hasheqf1o 10877 hashfacen 10928 fz1f1o 11540 nninfct 12208 eulerth 12401 ennnfonelemim 12641 exmidunben 12643 ctinfom 12645 qnnen 12648 enctlem 12649 ctiunct 12657 exmidsbthrlem 15666 sbthom 15670 | 
| Copyright terms: Public domain | W3C validator |