ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bren GIF version

Theorem bren 6692
Description: Equinumerosity relation. (Contributed by NM, 15-Jun-1998.)
Assertion
Ref Expression
bren (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem bren
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 encv 6691 . 2 (𝐴𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
2 f1ofn 5415 . . . . 5 (𝑓:𝐴1-1-onto𝐵𝑓 Fn 𝐴)
3 fndm 5269 . . . . . 6 (𝑓 Fn 𝐴 → dom 𝑓 = 𝐴)
4 vex 2715 . . . . . . 7 𝑓 ∈ V
54dmex 4852 . . . . . 6 dom 𝑓 ∈ V
63, 5eqeltrrdi 2249 . . . . 5 (𝑓 Fn 𝐴𝐴 ∈ V)
72, 6syl 14 . . . 4 (𝑓:𝐴1-1-onto𝐵𝐴 ∈ V)
8 f1ofo 5421 . . . . . 6 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴onto𝐵)
9 forn 5395 . . . . . 6 (𝑓:𝐴onto𝐵 → ran 𝑓 = 𝐵)
108, 9syl 14 . . . . 5 (𝑓:𝐴1-1-onto𝐵 → ran 𝑓 = 𝐵)
114rnex 4853 . . . . 5 ran 𝑓 ∈ V
1210, 11eqeltrrdi 2249 . . . 4 (𝑓:𝐴1-1-onto𝐵𝐵 ∈ V)
137, 12jca 304 . . 3 (𝑓:𝐴1-1-onto𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
1413exlimiv 1578 . 2 (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
15 f1oeq2 5404 . . . 4 (𝑥 = 𝐴 → (𝑓:𝑥1-1-onto𝑦𝑓:𝐴1-1-onto𝑦))
1615exbidv 1805 . . 3 (𝑥 = 𝐴 → (∃𝑓 𝑓:𝑥1-1-onto𝑦 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝑦))
17 f1oeq3 5405 . . . 4 (𝑦 = 𝐵 → (𝑓:𝐴1-1-onto𝑦𝑓:𝐴1-1-onto𝐵))
1817exbidv 1805 . . 3 (𝑦 = 𝐵 → (∃𝑓 𝑓:𝐴1-1-onto𝑦 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵))
19 df-en 6686 . . 3 ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
2016, 18, 19brabg 4229 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵))
211, 14, 20pm5.21nii 694 1 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1335  wex 1472  wcel 2128  Vcvv 2712   class class class wbr 3965  dom cdm 4586  ran crn 4587   Fn wfn 5165  ontowfo 5168  1-1-ontowf1o 5169  cen 6683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-xp 4592  df-rel 4593  df-cnv 4594  df-dm 4596  df-rn 4597  df-fn 5173  df-f 5174  df-f1 5175  df-fo 5176  df-f1o 5177  df-en 6686
This theorem is referenced by:  domen  6696  f1oen3g  6699  ener  6724  en0  6740  ensn1  6741  en1  6744  unen  6761  enm  6765  xpen  6790  mapen  6791  ssenen  6796  phplem4  6800  phplem4on  6812  fidceq  6814  dif1en  6824  fin0  6830  fin0or  6831  en2eqpr  6852  fiintim  6873  fidcenumlemim  6896  enomnilem  7081  enmkvlem  7104  enwomnilem  7112  cc3  7188  hasheqf1o  10659  hashfacen  10707  fz1f1o  11272  eulerth  12108  ennnfonelemim  12164  exmidunben  12166  ctinfom  12168  qnnen  12171  enctlem  12172  ctiunct  12180  exmidsbthrlem  13604  sbthom  13608
  Copyright terms: Public domain W3C validator