Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bren | GIF version |
Description: Equinumerosity relation. (Contributed by NM, 15-Jun-1998.) |
Ref | Expression |
---|---|
bren | ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | encv 6691 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
2 | f1ofn 5415 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓 Fn 𝐴) | |
3 | fndm 5269 | . . . . . 6 ⊢ (𝑓 Fn 𝐴 → dom 𝑓 = 𝐴) | |
4 | vex 2715 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
5 | 4 | dmex 4852 | . . . . . 6 ⊢ dom 𝑓 ∈ V |
6 | 3, 5 | eqeltrrdi 2249 | . . . . 5 ⊢ (𝑓 Fn 𝐴 → 𝐴 ∈ V) |
7 | 2, 6 | syl 14 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐴 ∈ V) |
8 | f1ofo 5421 | . . . . . 6 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝑓:𝐴–onto→𝐵) | |
9 | forn 5395 | . . . . . 6 ⊢ (𝑓:𝐴–onto→𝐵 → ran 𝑓 = 𝐵) | |
10 | 8, 9 | syl 14 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → ran 𝑓 = 𝐵) |
11 | 4 | rnex 4853 | . . . . 5 ⊢ ran 𝑓 ∈ V |
12 | 10, 11 | eqeltrrdi 2249 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → 𝐵 ∈ V) |
13 | 7, 12 | jca 304 | . . 3 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
14 | 13 | exlimiv 1578 | . 2 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
15 | f1oeq2 5404 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑓:𝑥–1-1-onto→𝑦 ↔ 𝑓:𝐴–1-1-onto→𝑦)) | |
16 | 15 | exbidv 1805 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑓 𝑓:𝑥–1-1-onto→𝑦 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝑦)) |
17 | f1oeq3 5405 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑓:𝐴–1-1-onto→𝑦 ↔ 𝑓:𝐴–1-1-onto→𝐵)) | |
18 | 17 | exbidv 1805 | . . 3 ⊢ (𝑦 = 𝐵 → (∃𝑓 𝑓:𝐴–1-1-onto→𝑦 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) |
19 | df-en 6686 | . . 3 ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} | |
20 | 16, 18, 19 | brabg 4229 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) |
21 | 1, 14, 20 | pm5.21nii 694 | 1 ⊢ (𝐴 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1335 ∃wex 1472 ∈ wcel 2128 Vcvv 2712 class class class wbr 3965 dom cdm 4586 ran crn 4587 Fn wfn 5165 –onto→wfo 5168 –1-1-onto→wf1o 5169 ≈ cen 6683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-xp 4592 df-rel 4593 df-cnv 4594 df-dm 4596 df-rn 4597 df-fn 5173 df-f 5174 df-f1 5175 df-fo 5176 df-f1o 5177 df-en 6686 |
This theorem is referenced by: domen 6696 f1oen3g 6699 ener 6724 en0 6740 ensn1 6741 en1 6744 unen 6761 enm 6765 xpen 6790 mapen 6791 ssenen 6796 phplem4 6800 phplem4on 6812 fidceq 6814 dif1en 6824 fin0 6830 fin0or 6831 en2eqpr 6852 fiintim 6873 fidcenumlemim 6896 enomnilem 7081 enmkvlem 7104 enwomnilem 7112 cc3 7188 hasheqf1o 10659 hashfacen 10707 fz1f1o 11272 eulerth 12108 ennnfonelemim 12164 exmidunben 12166 ctinfom 12168 qnnen 12171 enctlem 12172 ctiunct 12180 exmidsbthrlem 13604 sbthom 13608 |
Copyright terms: Public domain | W3C validator |