ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bren GIF version

Theorem bren 6801
Description: Equinumerosity relation. (Contributed by NM, 15-Jun-1998.)
Assertion
Ref Expression
bren (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem bren
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 encv 6800 . 2 (𝐴𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
2 f1ofn 5501 . . . . 5 (𝑓:𝐴1-1-onto𝐵𝑓 Fn 𝐴)
3 fndm 5353 . . . . . 6 (𝑓 Fn 𝐴 → dom 𝑓 = 𝐴)
4 vex 2763 . . . . . . 7 𝑓 ∈ V
54dmex 4928 . . . . . 6 dom 𝑓 ∈ V
63, 5eqeltrrdi 2285 . . . . 5 (𝑓 Fn 𝐴𝐴 ∈ V)
72, 6syl 14 . . . 4 (𝑓:𝐴1-1-onto𝐵𝐴 ∈ V)
8 f1ofo 5507 . . . . . 6 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴onto𝐵)
9 forn 5479 . . . . . 6 (𝑓:𝐴onto𝐵 → ran 𝑓 = 𝐵)
108, 9syl 14 . . . . 5 (𝑓:𝐴1-1-onto𝐵 → ran 𝑓 = 𝐵)
114rnex 4929 . . . . 5 ran 𝑓 ∈ V
1210, 11eqeltrrdi 2285 . . . 4 (𝑓:𝐴1-1-onto𝐵𝐵 ∈ V)
137, 12jca 306 . . 3 (𝑓:𝐴1-1-onto𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
1413exlimiv 1609 . 2 (∃𝑓 𝑓:𝐴1-1-onto𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
15 f1oeq2 5489 . . . 4 (𝑥 = 𝐴 → (𝑓:𝑥1-1-onto𝑦𝑓:𝐴1-1-onto𝑦))
1615exbidv 1836 . . 3 (𝑥 = 𝐴 → (∃𝑓 𝑓:𝑥1-1-onto𝑦 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝑦))
17 f1oeq3 5490 . . . 4 (𝑦 = 𝐵 → (𝑓:𝐴1-1-onto𝑦𝑓:𝐴1-1-onto𝐵))
1817exbidv 1836 . . 3 (𝑦 = 𝐵 → (∃𝑓 𝑓:𝐴1-1-onto𝑦 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵))
19 df-en 6795 . . 3 ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
2016, 18, 19brabg 4299 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵))
211, 14, 20pm5.21nii 705 1 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wex 1503  wcel 2164  Vcvv 2760   class class class wbr 4029  dom cdm 4659  ran crn 4660   Fn wfn 5249  ontowfo 5252  1-1-ontowf1o 5253  cen 6792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-dm 4669  df-rn 4670  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-en 6795
This theorem is referenced by:  domen  6805  f1oen3g  6808  ener  6833  en0  6849  ensn1  6850  en1  6853  unen  6870  enm  6874  xpen  6901  mapen  6902  ssenen  6907  phplem4  6911  phplem4on  6923  fidceq  6925  dif1en  6935  fin0  6941  fin0or  6942  en2eqpr  6963  fiintim  6985  fidcenumlemim  7011  enomnilem  7197  enmkvlem  7220  enwomnilem  7228  cc3  7328  hasheqf1o  10856  hashfacen  10907  fz1f1o  11518  nninfct  12178  eulerth  12371  ennnfonelemim  12581  exmidunben  12583  ctinfom  12585  qnnen  12588  enctlem  12589  ctiunct  12597  exmidsbthrlem  15512  sbthom  15516
  Copyright terms: Public domain W3C validator