ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enssdom GIF version

Theorem enssdom 6816
Description: Equinumerosity implies dominance. (Contributed by NM, 31-Mar-1998.)
Assertion
Ref Expression
enssdom ≈ ⊆ ≼

Proof of Theorem enssdom
Dummy variables 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relen 6798 . 2 Rel ≈
2 f1of1 5499 . . . . 5 (𝑓:𝑥1-1-onto𝑦𝑓:𝑥1-1𝑦)
32eximi 1611 . . . 4 (∃𝑓 𝑓:𝑥1-1-onto𝑦 → ∃𝑓 𝑓:𝑥1-1𝑦)
4 opabid 4286 . . . 4 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦} ↔ ∃𝑓 𝑓:𝑥1-1-onto𝑦)
5 opabid 4286 . . . 4 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1𝑦} ↔ ∃𝑓 𝑓:𝑥1-1𝑦)
63, 4, 53imtr4i 201 . . 3 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦} → ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1𝑦})
7 df-en 6795 . . . 4 ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
87eleq2i 2260 . . 3 (⟨𝑥, 𝑦⟩ ∈ ≈ ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦})
9 df-dom 6796 . . . 4 ≼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1𝑦}
109eleq2i 2260 . . 3 (⟨𝑥, 𝑦⟩ ∈ ≼ ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1𝑦})
116, 8, 103imtr4i 201 . 2 (⟨𝑥, 𝑦⟩ ∈ ≈ → ⟨𝑥, 𝑦⟩ ∈ ≼ )
121, 11relssi 4750 1 ≈ ⊆ ≼
Colors of variables: wff set class
Syntax hints:  wex 1503  wcel 2164  wss 3153  cop 3621  {copab 4089  1-1wf1 5251  1-1-ontowf1o 5253  cen 6792  cdom 6793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-opab 4091  df-xp 4665  df-rel 4666  df-f1o 5261  df-en 6795  df-dom 6796
This theorem is referenced by:  endom  6817
  Copyright terms: Public domain W3C validator