Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > enssdom | GIF version |
Description: Equinumerosity implies dominance. (Contributed by NM, 31-Mar-1998.) |
Ref | Expression |
---|---|
enssdom | ⊢ ≈ ⊆ ≼ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relen 6722 | . 2 ⊢ Rel ≈ | |
2 | f1of1 5441 | . . . . 5 ⊢ (𝑓:𝑥–1-1-onto→𝑦 → 𝑓:𝑥–1-1→𝑦) | |
3 | 2 | eximi 1593 | . . . 4 ⊢ (∃𝑓 𝑓:𝑥–1-1-onto→𝑦 → ∃𝑓 𝑓:𝑥–1-1→𝑦) |
4 | opabid 4242 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} ↔ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦) | |
5 | opabid 4242 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} ↔ ∃𝑓 𝑓:𝑥–1-1→𝑦) | |
6 | 3, 4, 5 | 3imtr4i 200 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} → 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦}) |
7 | df-en 6719 | . . . 4 ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} | |
8 | 7 | eleq2i 2237 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ≈ ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦}) |
9 | df-dom 6720 | . . . 4 ⊢ ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} | |
10 | 9 | eleq2i 2237 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ≼ ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦}) |
11 | 6, 8, 10 | 3imtr4i 200 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ≈ → 〈𝑥, 𝑦〉 ∈ ≼ ) |
12 | 1, 11 | relssi 4702 | 1 ⊢ ≈ ⊆ ≼ |
Colors of variables: wff set class |
Syntax hints: ∃wex 1485 ∈ wcel 2141 ⊆ wss 3121 〈cop 3586 {copab 4049 –1-1→wf1 5195 –1-1-onto→wf1o 5197 ≈ cen 6716 ≼ cdom 6717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-opab 4051 df-xp 4617 df-rel 4618 df-f1o 5205 df-en 6719 df-dom 6720 |
This theorem is referenced by: endom 6741 |
Copyright terms: Public domain | W3C validator |