![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > enssdom | GIF version |
Description: Equinumerosity implies dominance. (Contributed by NM, 31-Mar-1998.) |
Ref | Expression |
---|---|
enssdom | ⊢ ≈ ⊆ ≼ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relen 6590 | . 2 ⊢ Rel ≈ | |
2 | f1of1 5320 | . . . . 5 ⊢ (𝑓:𝑥–1-1-onto→𝑦 → 𝑓:𝑥–1-1→𝑦) | |
3 | 2 | eximi 1560 | . . . 4 ⊢ (∃𝑓 𝑓:𝑥–1-1-onto→𝑦 → ∃𝑓 𝑓:𝑥–1-1→𝑦) |
4 | opabid 4137 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} ↔ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦) | |
5 | opabid 4137 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} ↔ ∃𝑓 𝑓:𝑥–1-1→𝑦) | |
6 | 3, 4, 5 | 3imtr4i 200 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} → 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦}) |
7 | df-en 6587 | . . . 4 ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} | |
8 | 7 | eleq2i 2179 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ≈ ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦}) |
9 | df-dom 6588 | . . . 4 ⊢ ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} | |
10 | 9 | eleq2i 2179 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ≼ ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦}) |
11 | 6, 8, 10 | 3imtr4i 200 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ≈ → 〈𝑥, 𝑦〉 ∈ ≼ ) |
12 | 1, 11 | relssi 4588 | 1 ⊢ ≈ ⊆ ≼ |
Colors of variables: wff set class |
Syntax hints: ∃wex 1449 ∈ wcel 1461 ⊆ wss 3035 〈cop 3494 {copab 3946 –1-1→wf1 5076 –1-1-onto→wf1o 5078 ≈ cen 6584 ≼ cdom 6585 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-pow 4056 ax-pr 4089 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ral 2393 df-rex 2394 df-v 2657 df-un 3039 df-in 3041 df-ss 3048 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-opab 3948 df-xp 4503 df-rel 4504 df-f1o 5086 df-en 6587 df-dom 6588 |
This theorem is referenced by: endom 6609 |
Copyright terms: Public domain | W3C validator |