| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enssdom | GIF version | ||
| Description: Equinumerosity implies dominance. (Contributed by NM, 31-Mar-1998.) |
| Ref | Expression |
|---|---|
| enssdom | ⊢ ≈ ⊆ ≼ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relen 6889 | . 2 ⊢ Rel ≈ | |
| 2 | f1of1 5570 | . . . . 5 ⊢ (𝑓:𝑥–1-1-onto→𝑦 → 𝑓:𝑥–1-1→𝑦) | |
| 3 | 2 | eximi 1646 | . . . 4 ⊢ (∃𝑓 𝑓:𝑥–1-1-onto→𝑦 → ∃𝑓 𝑓:𝑥–1-1→𝑦) |
| 4 | opabid 4343 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} ↔ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦) | |
| 5 | opabid 4343 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} ↔ ∃𝑓 𝑓:𝑥–1-1→𝑦) | |
| 6 | 3, 4, 5 | 3imtr4i 201 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} → 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦}) |
| 7 | df-en 6886 | . . . 4 ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} | |
| 8 | 7 | eleq2i 2296 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ≈ ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦}) |
| 9 | df-dom 6887 | . . . 4 ⊢ ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} | |
| 10 | 9 | eleq2i 2296 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ≼ ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦}) |
| 11 | 6, 8, 10 | 3imtr4i 201 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ≈ → 〈𝑥, 𝑦〉 ∈ ≼ ) |
| 12 | 1, 11 | relssi 4809 | 1 ⊢ ≈ ⊆ ≼ |
| Colors of variables: wff set class |
| Syntax hints: ∃wex 1538 ∈ wcel 2200 ⊆ wss 3197 〈cop 3669 {copab 4143 –1-1→wf1 5314 –1-1-onto→wf1o 5316 ≈ cen 6883 ≼ cdom 6884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4145 df-xp 4724 df-rel 4725 df-f1o 5324 df-en 6886 df-dom 6887 |
| This theorem is referenced by: endom 6912 |
| Copyright terms: Public domain | W3C validator |