![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > enssdom | GIF version |
Description: Equinumerosity implies dominance. (Contributed by NM, 31-Mar-1998.) |
Ref | Expression |
---|---|
enssdom | ⊢ ≈ ⊆ ≼ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relen 6747 | . 2 ⊢ Rel ≈ | |
2 | f1of1 5462 | . . . . 5 ⊢ (𝑓:𝑥–1-1-onto→𝑦 → 𝑓:𝑥–1-1→𝑦) | |
3 | 2 | eximi 1600 | . . . 4 ⊢ (∃𝑓 𝑓:𝑥–1-1-onto→𝑦 → ∃𝑓 𝑓:𝑥–1-1→𝑦) |
4 | opabid 4259 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} ↔ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦) | |
5 | opabid 4259 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} ↔ ∃𝑓 𝑓:𝑥–1-1→𝑦) | |
6 | 3, 4, 5 | 3imtr4i 201 | . . 3 ⊢ (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} → ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦}) |
7 | df-en 6744 | . . . 4 ⊢ ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} | |
8 | 7 | eleq2i 2244 | . . 3 ⊢ (⟨𝑥, 𝑦⟩ ∈ ≈ ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦}) |
9 | df-dom 6745 | . . . 4 ⊢ ≼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} | |
10 | 9 | eleq2i 2244 | . . 3 ⊢ (⟨𝑥, 𝑦⟩ ∈ ≼ ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦}) |
11 | 6, 8, 10 | 3imtr4i 201 | . 2 ⊢ (⟨𝑥, 𝑦⟩ ∈ ≈ → ⟨𝑥, 𝑦⟩ ∈ ≼ ) |
12 | 1, 11 | relssi 4719 | 1 ⊢ ≈ ⊆ ≼ |
Colors of variables: wff set class |
Syntax hints: ∃wex 1492 ∈ wcel 2148 ⊆ wss 3131 ⟨cop 3597 {copab 4065 –1-1→wf1 5215 –1-1-onto→wf1o 5217 ≈ cen 6741 ≼ cdom 6742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-opab 4067 df-xp 4634 df-rel 4635 df-f1o 5225 df-en 6744 df-dom 6745 |
This theorem is referenced by: endom 6766 |
Copyright terms: Public domain | W3C validator |