Detailed syntax breakdown of Definition df-icc
Step | Hyp | Ref
| Expression |
1 | | cicc 9823 |
. 2
class
[,] |
2 | | vx |
. . 3
setvar 𝑥 |
3 | | vy |
. . 3
setvar 𝑦 |
4 | | cxr 7928 |
. . 3
class
ℝ* |
5 | 2 | cv 1342 |
. . . . . 6
class 𝑥 |
6 | | vz |
. . . . . . 7
setvar 𝑧 |
7 | 6 | cv 1342 |
. . . . . 6
class 𝑧 |
8 | | cle 7930 |
. . . . . 6
class
≤ |
9 | 5, 7, 8 | wbr 3981 |
. . . . 5
wff 𝑥 ≤ 𝑧 |
10 | 3 | cv 1342 |
. . . . . 6
class 𝑦 |
11 | 7, 10, 8 | wbr 3981 |
. . . . 5
wff 𝑧 ≤ 𝑦 |
12 | 9, 11 | wa 103 |
. . . 4
wff (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦) |
13 | 12, 6, 4 | crab 2447 |
. . 3
class {𝑧 ∈ ℝ*
∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} |
14 | 2, 3, 4, 4, 13 | cmpo 5843 |
. 2
class (𝑥 ∈ ℝ*,
𝑦 ∈
ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
15 | 1, 14 | wceq 1343 |
1
wff [,] =
(𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |