![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-icc | GIF version |
Description: Define the set of closed intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
df-icc | ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cicc 9891 | . 2 class [,] | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cxr 7991 | . . 3 class ℝ* | |
5 | 2 | cv 1352 | . . . . . 6 class 𝑥 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1352 | . . . . . 6 class 𝑧 |
8 | cle 7993 | . . . . . 6 class ≤ | |
9 | 5, 7, 8 | wbr 4004 | . . . . 5 wff 𝑥 ≤ 𝑧 |
10 | 3 | cv 1352 | . . . . . 6 class 𝑦 |
11 | 7, 10, 8 | wbr 4004 | . . . . 5 wff 𝑧 ≤ 𝑦 |
12 | 9, 11 | wa 104 | . . . 4 wff (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦) |
13 | 12, 6, 4 | crab 2459 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} |
14 | 2, 3, 4, 4, 13 | cmpo 5877 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
15 | 1, 14 | wceq 1353 | 1 wff [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
Colors of variables: wff set class |
This definition is referenced by: iccval 9920 elicc1 9924 iccss 9941 iccssioo 9942 iccss2 9944 iccssico 9945 iccssxr 9956 ioossicc 9959 icossicc 9960 iocssicc 9961 iccf 9972 ioodisj 9993 |
Copyright terms: Public domain | W3C validator |