ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-icc GIF version

Definition df-icc 9999
Description: Define the set of closed intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
Assertion
Ref Expression
df-icc [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-icc
StepHypRef Expression
1 cicc 9995 . 2 class [,]
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cxr 8088 . . 3 class *
52cv 1371 . . . . . 6 class 𝑥
6 vz . . . . . . 7 setvar 𝑧
76cv 1371 . . . . . 6 class 𝑧
8 cle 8090 . . . . . 6 class
95, 7, 8wbr 4043 . . . . 5 wff 𝑥𝑧
103cv 1371 . . . . . 6 class 𝑦
117, 10, 8wbr 4043 . . . . 5 wff 𝑧𝑦
129, 11wa 104 . . . 4 wff (𝑥𝑧𝑧𝑦)
1312, 6, 4crab 2487 . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)}
142, 3, 4, 4, 13cmpo 5936 . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
151, 14wceq 1372 1 wff [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
Colors of variables: wff set class
This definition is referenced by:  iccval  10024  elicc1  10028  iccss  10045  iccssioo  10046  iccss2  10048  iccssico  10049  iccssxr  10060  ioossicc  10063  icossicc  10064  iocssicc  10065  iccf  10076  ioodisj  10097
  Copyright terms: Public domain W3C validator