ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-ico GIF version

Definition df-ico 9960
Description: Define the set of closed-below, open-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
Assertion
Ref Expression
df-ico [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-ico
StepHypRef Expression
1 cico 9956 . 2 class [,)
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cxr 8053 . . 3 class *
52cv 1363 . . . . . 6 class 𝑥
6 vz . . . . . . 7 setvar 𝑧
76cv 1363 . . . . . 6 class 𝑧
8 cle 8055 . . . . . 6 class
95, 7, 8wbr 4029 . . . . 5 wff 𝑥𝑧
103cv 1363 . . . . . 6 class 𝑦
11 clt 8054 . . . . . 6 class <
127, 10, 11wbr 4029 . . . . 5 wff 𝑧 < 𝑦
139, 12wa 104 . . . 4 wff (𝑥𝑧𝑧 < 𝑦)
1413, 6, 4crab 2476 . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}
152, 3, 4, 4, 14cmpo 5920 . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
161, 15wceq 1364 1 wff [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
Colors of variables: wff set class
This definition is referenced by:  icoval  9985  elico1  9989  icossico  10009  iccssico  10011  iccssico2  10013  icossxr  10024  icossicc  10026  ioossico  10028  icossioo  10030  elicore  10335
  Copyright terms: Public domain W3C validator