| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ixxval | GIF version | ||
| Description: Value of the interval function. (Contributed by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| ixx.1 | ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
| Ref | Expression |
|---|---|
| ixxval | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴𝑂𝐵) = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 4036 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝑅𝑧 ↔ 𝐴𝑅𝑧)) | |
| 2 | 1 | anbi1d 465 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦) ↔ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝑦))) |
| 3 | 2 | rabbidv 2752 | . 2 ⊢ (𝑥 = 𝐴 → {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)} = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
| 4 | breq2 4037 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑧𝑆𝑦 ↔ 𝑧𝑆𝐵)) | |
| 5 | 4 | anbi2d 464 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴𝑅𝑧 ∧ 𝑧𝑆𝑦) ↔ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵))) |
| 6 | 5 | rabbidv 2752 | . 2 ⊢ (𝑦 = 𝐵 → {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝑦)} = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵)}) |
| 7 | ixx.1 | . 2 ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) | |
| 8 | xrex 9931 | . . 3 ⊢ ℝ* ∈ V | |
| 9 | 8 | rabex 4177 | . 2 ⊢ {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵)} ∈ V |
| 10 | 3, 6, 7, 9 | ovmpo 6058 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴𝑂𝐵) = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵)}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 {crab 2479 class class class wbr 4033 (class class class)co 5922 ∈ cmpo 5924 ℝ*cxr 8060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 |
| This theorem is referenced by: elixx1 9972 iooval 9983 iocval 9993 icoval 9994 iccval 9995 |
| Copyright terms: Public domain | W3C validator |