ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixxval GIF version

Theorem ixxval 10033
Description: Value of the interval function. (Contributed by Mario Carneiro, 3-Nov-2013.)
Hypothesis
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
Assertion
Ref Expression
ixxval ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝑂𝐵) = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧𝑧𝑆𝐵)})
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝑂(𝑥,𝑦,𝑧)

Proof of Theorem ixxval
StepHypRef Expression
1 breq1 4053 . . . 4 (𝑥 = 𝐴 → (𝑥𝑅𝑧𝐴𝑅𝑧))
21anbi1d 465 . . 3 (𝑥 = 𝐴 → ((𝑥𝑅𝑧𝑧𝑆𝑦) ↔ (𝐴𝑅𝑧𝑧𝑆𝑦)))
32rabbidv 2762 . 2 (𝑥 = 𝐴 → {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)} = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧𝑧𝑆𝑦)})
4 breq2 4054 . . . 4 (𝑦 = 𝐵 → (𝑧𝑆𝑦𝑧𝑆𝐵))
54anbi2d 464 . . 3 (𝑦 = 𝐵 → ((𝐴𝑅𝑧𝑧𝑆𝑦) ↔ (𝐴𝑅𝑧𝑧𝑆𝐵)))
65rabbidv 2762 . 2 (𝑦 = 𝐵 → {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧𝑧𝑆𝑦)} = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧𝑧𝑆𝐵)})
7 ixx.1 . 2 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
8 xrex 9993 . . 3 * ∈ V
98rabex 4195 . 2 {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧𝑧𝑆𝐵)} ∈ V
103, 6, 7, 9ovmpo 6093 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝑂𝐵) = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧𝑧𝑆𝐵)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  {crab 2489   class class class wbr 4050  (class class class)co 5956  cmpo 5958  *cxr 8121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-cnex 8031  ax-resscn 8032
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-br 4051  df-opab 4113  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-iota 5240  df-fun 5281  df-fv 5287  df-ov 5959  df-oprab 5960  df-mpo 5961  df-pnf 8124  df-mnf 8125  df-xr 8126
This theorem is referenced by:  elixx1  10034  iooval  10045  iocval  10055  icoval  10056  iccval  10057
  Copyright terms: Public domain W3C validator