ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixxval GIF version

Theorem ixxval 9988
Description: Value of the interval function. (Contributed by Mario Carneiro, 3-Nov-2013.)
Hypothesis
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
Assertion
Ref Expression
ixxval ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝑂𝐵) = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧𝑧𝑆𝐵)})
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝑂(𝑥,𝑦,𝑧)

Proof of Theorem ixxval
StepHypRef Expression
1 breq1 4037 . . . 4 (𝑥 = 𝐴 → (𝑥𝑅𝑧𝐴𝑅𝑧))
21anbi1d 465 . . 3 (𝑥 = 𝐴 → ((𝑥𝑅𝑧𝑧𝑆𝑦) ↔ (𝐴𝑅𝑧𝑧𝑆𝑦)))
32rabbidv 2752 . 2 (𝑥 = 𝐴 → {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)} = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧𝑧𝑆𝑦)})
4 breq2 4038 . . . 4 (𝑦 = 𝐵 → (𝑧𝑆𝑦𝑧𝑆𝐵))
54anbi2d 464 . . 3 (𝑦 = 𝐵 → ((𝐴𝑅𝑧𝑧𝑆𝑦) ↔ (𝐴𝑅𝑧𝑧𝑆𝐵)))
65rabbidv 2752 . 2 (𝑦 = 𝐵 → {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧𝑧𝑆𝑦)} = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧𝑧𝑆𝐵)})
7 ixx.1 . 2 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
8 xrex 9948 . . 3 * ∈ V
98rabex 4178 . 2 {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧𝑧𝑆𝐵)} ∈ V
103, 6, 7, 9ovmpo 6062 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝑂𝐵) = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧𝑧𝑆𝐵)})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  {crab 2479   class class class wbr 4034  (class class class)co 5925  cmpo 5927  *cxr 8077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082
This theorem is referenced by:  elixx1  9989  iooval  10000  iocval  10010  icoval  10011  iccval  10012
  Copyright terms: Public domain W3C validator