| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iocssicc | GIF version | ||
| Description: A closed-above, open-below interval is a subset of its closure. (Contributed by Thierry Arnoux, 1-Apr-2017.) |
| Ref | Expression |
|---|---|
| iocssicc | ⊢ (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ioc 9985 | . 2 ⊢ (,] = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎 < 𝑥 ∧ 𝑥 ≤ 𝑏)}) | |
| 2 | df-icc 9987 | . 2 ⊢ [,] = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎 ≤ 𝑥 ∧ 𝑥 ≤ 𝑏)}) | |
| 3 | xrltle 9890 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 < 𝑤 → 𝐴 ≤ 𝑤)) | |
| 4 | idd 21 | . 2 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 ≤ 𝐵 → 𝑤 ≤ 𝐵)) | |
| 5 | 1, 2, 3, 4 | ixxssixx 9994 | 1 ⊢ (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∈ wcel 2167 ⊆ wss 3157 class class class wbr 4034 (class class class)co 5925 ℝ*cxr 8077 < clt 8078 ≤ cle 8079 (,]cioc 9981 [,]cicc 9983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-pre-ltirr 8008 ax-pre-lttrn 8010 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-ioc 9985 df-icc 9987 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |