ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iedg GIF version

Definition df-iedg 15556
Description: Define the function mapping a graph to its indexed edges. This definition is very general: It defines the indexed edges for any ordered pair as its second component, and for any other class as its "edge function". It is meaningful, however, only if the ordered pair represents a graph resp. the class is an extensible structure (containing a slot for "edge functions") representing a graph. (Contributed by AV, 20-Sep-2020.)
Assertion
Ref Expression
df-iedg iEdg = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔)))

Detailed syntax breakdown of Definition df-iedg
StepHypRef Expression
1 ciedg 15554 . 2 class iEdg
2 vg . . 3 setvar 𝑔
3 cvv 2771 . . 3 class V
42cv 1371 . . . . 5 class 𝑔
53, 3cxp 4672 . . . . 5 class (V × V)
64, 5wcel 2175 . . . 4 wff 𝑔 ∈ (V × V)
7 c2nd 6224 . . . . 5 class 2nd
84, 7cfv 5270 . . . 4 class (2nd𝑔)
9 cedgf 15545 . . . . 5 class .ef
104, 9cfv 5270 . . . 4 class (.ef‘𝑔)
116, 8, 10cif 3570 . . 3 class if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔))
122, 3, 11cmpt 4104 . 2 class (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔)))
131, 12wceq 1372 1 wff iEdg = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔)))
Colors of variables: wff set class
This definition is referenced by:  iedgvalg  15558
  Copyright terms: Public domain W3C validator