ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iedg GIF version

Definition df-iedg 15689
Description: Define the function mapping a graph to its indexed edges. This definition is very general: It defines the indexed edges for any ordered pair as its second component, and for any other class as its "edge function". It is meaningful, however, only if the ordered pair represents a graph resp. the class is an extensible structure (containing a slot for "edge functions") representing a graph. (Contributed by AV, 20-Sep-2020.)
Assertion
Ref Expression
df-iedg iEdg = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔)))

Detailed syntax breakdown of Definition df-iedg
StepHypRef Expression
1 ciedg 15687 . 2 class iEdg
2 vg . . 3 setvar 𝑔
3 cvv 2773 . . 3 class V
42cv 1372 . . . . 5 class 𝑔
53, 3cxp 4681 . . . . 5 class (V × V)
64, 5wcel 2177 . . . 4 wff 𝑔 ∈ (V × V)
7 c2nd 6238 . . . . 5 class 2nd
84, 7cfv 5280 . . . 4 class (2nd𝑔)
9 cedgf 15678 . . . . 5 class .ef
104, 9cfv 5280 . . . 4 class (.ef‘𝑔)
116, 8, 10cif 3575 . . 3 class if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔))
122, 3, 11cmpt 4113 . 2 class (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔)))
131, 12wceq 1373 1 wff iEdg = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔)))
Colors of variables: wff set class
This definition is referenced by:  iedgvalg  15691
  Copyright terms: Public domain W3C validator