| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-iedg | GIF version | ||
| Description: Define the function mapping a graph to its indexed edges. This definition is very general: It defines the indexed edges for any ordered pair as its second component, and for any other class as its "edge function". It is meaningful, however, only if the ordered pair represents a graph resp. the class is an extensible structure (containing a slot for "edge functions") representing a graph. (Contributed by AV, 20-Sep-2020.) |
| Ref | Expression |
|---|---|
| df-iedg | ⊢ iEdg = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd ‘𝑔), (.ef‘𝑔))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ciedg 15808 | . 2 class iEdg | |
| 2 | vg | . . 3 setvar 𝑔 | |
| 3 | cvv 2799 | . . 3 class V | |
| 4 | 2 | cv 1394 | . . . . 5 class 𝑔 |
| 5 | 3, 3 | cxp 4716 | . . . . 5 class (V × V) |
| 6 | 4, 5 | wcel 2200 | . . . 4 wff 𝑔 ∈ (V × V) |
| 7 | c2nd 6283 | . . . . 5 class 2nd | |
| 8 | 4, 7 | cfv 5317 | . . . 4 class (2nd ‘𝑔) |
| 9 | cedgf 15799 | . . . . 5 class .ef | |
| 10 | 4, 9 | cfv 5317 | . . . 4 class (.ef‘𝑔) |
| 11 | 6, 8, 10 | cif 3602 | . . 3 class if(𝑔 ∈ (V × V), (2nd ‘𝑔), (.ef‘𝑔)) |
| 12 | 2, 3, 11 | cmpt 4144 | . 2 class (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd ‘𝑔), (.ef‘𝑔))) |
| 13 | 1, 12 | wceq 1395 | 1 wff iEdg = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd ‘𝑔), (.ef‘𝑔))) |
| Colors of variables: wff set class |
| This definition is referenced by: iedgvalg 15812 |
| Copyright terms: Public domain | W3C validator |