| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iedgvalg | GIF version | ||
| Description: The set of indexed edges of a graph. (Contributed by AV, 21-Sep-2020.) |
| Ref | Expression |
|---|---|
| iedgvalg | ⊢ (𝐺 ∈ 𝑉 → (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iedg 15689 | . 2 ⊢ iEdg = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd ‘𝑔), (.ef‘𝑔))) | |
| 2 | eleq1 2269 | . . 3 ⊢ (𝑔 = 𝐺 → (𝑔 ∈ (V × V) ↔ 𝐺 ∈ (V × V))) | |
| 3 | fveq2 5589 | . . 3 ⊢ (𝑔 = 𝐺 → (2nd ‘𝑔) = (2nd ‘𝐺)) | |
| 4 | fveq2 5589 | . . 3 ⊢ (𝑔 = 𝐺 → (.ef‘𝑔) = (.ef‘𝐺)) | |
| 5 | 2, 3, 4 | ifbieq12d 3602 | . 2 ⊢ (𝑔 = 𝐺 → if(𝑔 ∈ (V × V), (2nd ‘𝑔), (.ef‘𝑔)) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺))) |
| 6 | elex 2785 | . 2 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
| 7 | 2ndexg 6267 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (2nd ‘𝐺) ∈ V) | |
| 8 | edgfid 15680 | . . . . 5 ⊢ .ef = Slot (.ef‘ndx) | |
| 9 | edgfndxnn 15682 | . . . . 5 ⊢ (.ef‘ndx) ∈ ℕ | |
| 10 | 8, 9 | ndxslid 12932 | . . . 4 ⊢ (.ef = Slot (.ef‘ndx) ∧ (.ef‘ndx) ∈ ℕ) |
| 11 | 10 | slotex 12934 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (.ef‘𝐺) ∈ V) |
| 12 | 7, 11 | ifexd 4539 | . 2 ⊢ (𝐺 ∈ 𝑉 → if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) ∈ V) |
| 13 | 1, 5, 6, 12 | fvmptd3 5686 | 1 ⊢ (𝐺 ∈ 𝑉 → (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ifcif 3575 × cxp 4681 ‘cfv 5280 2nd c2nd 6238 ndxcnx 12904 .efcedgf 15678 iEdgciedg 15687 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fo 5286 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-2nd 6240 df-sub 8265 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-7 9120 df-8 9121 df-9 9122 df-n0 9316 df-dec 9525 df-ndx 12910 df-slot 12911 df-edgf 15679 df-iedg 15689 |
| This theorem is referenced by: iedgex 15693 opiedgval 15698 funiedgdm2domval 15704 funiedgdm2vald 15706 iedgval0 15726 edgvalg 15731 |
| Copyright terms: Public domain | W3C validator |