ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtxvalg GIF version

Theorem vtxvalg 15557
Description: The set of vertices of a graph. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 21-Sep-2020.)
Assertion
Ref Expression
vtxvalg (𝐺𝑉 → (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺)))

Proof of Theorem vtxvalg
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 df-vtx 15555 . 2 Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))
2 eleq1 2267 . . 3 (𝑔 = 𝐺 → (𝑔 ∈ (V × V) ↔ 𝐺 ∈ (V × V)))
3 fveq2 5575 . . 3 (𝑔 = 𝐺 → (1st𝑔) = (1st𝐺))
4 fveq2 5575 . . 3 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
52, 3, 4ifbieq12d 3596 . 2 (𝑔 = 𝐺 → if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)) = if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺)))
6 elex 2782 . 2 (𝐺𝑉𝐺 ∈ V)
7 1stexg 6252 . . 3 (𝐺𝑉 → (1st𝐺) ∈ V)
8 basfn 12832 . . . 4 Base Fn V
9 funfvex 5592 . . . . 5 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
109funfni 5375 . . . 4 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
118, 6, 10sylancr 414 . . 3 (𝐺𝑉 → (Base‘𝐺) ∈ V)
127, 11ifexd 4530 . 2 (𝐺𝑉 → if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺)) ∈ V)
131, 5, 6, 12fvmptd3 5672 1 (𝐺𝑉 → (Vtx‘𝐺) = if(𝐺 ∈ (V × V), (1st𝐺), (Base‘𝐺)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  wcel 2175  Vcvv 2771  ifcif 3570   × cxp 4672   Fn wfn 5265  cfv 5270  1st c1st 6223  Basecbs 12774  Vtxcvtx 15553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fo 5276  df-fv 5278  df-1st 6225  df-inn 9036  df-ndx 12777  df-slot 12778  df-base 12780  df-vtx 15555
This theorem is referenced by:  opvtxval  15560  funvtxdm2domval  15568  funvtxdm2vald  15570
  Copyright terms: Public domain W3C validator