ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  igsumvalx GIF version

Theorem igsumvalx 13417
Description: Expand out the substitutions in df-igsum 13287. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
gsumval.b 𝐵 = (Base‘𝐺)
gsumval.z 0 = (0g𝐺)
gsumval.p + = (+g𝐺)
gsumval.g (𝜑𝐺𝑉)
gsumvalx.f (𝜑𝐹𝑋)
gsumvalx.a (𝜑 → dom 𝐹 = 𝐴)
Assertion
Ref Expression
igsumvalx (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
Distinct variable groups:   𝑥, +   𝑥, 0   𝑚,𝐹,𝑛,𝑥   𝑚,𝐺,𝑛,𝑥   𝜑,𝑚,𝑛,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑚,𝑛)   𝐵(𝑥,𝑚,𝑛)   + (𝑚,𝑛)   𝑉(𝑥,𝑚,𝑛)   𝑋(𝑥,𝑚,𝑛)   0 (𝑚,𝑛)

Proof of Theorem igsumvalx
Dummy variables 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-igsum 13287 . . 3 Σg = (𝑤 ∈ V, 𝑔 ∈ V ↦ (℩𝑥((dom 𝑔 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑔 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑔)‘𝑛)))))
21a1i 9 . 2 (𝜑 → Σg = (𝑤 ∈ V, 𝑔 ∈ V ↦ (℩𝑥((dom 𝑔 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑔 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑔)‘𝑛))))))
3 simprr 531 . . . . . . . 8 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → 𝑔 = 𝐹)
43dmeqd 4924 . . . . . . 7 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → dom 𝑔 = dom 𝐹)
5 gsumvalx.a . . . . . . . 8 (𝜑 → dom 𝐹 = 𝐴)
65adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → dom 𝐹 = 𝐴)
74, 6eqtrd 2262 . . . . . 6 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → dom 𝑔 = 𝐴)
87eqeq1d 2238 . . . . 5 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → (dom 𝑔 = ∅ ↔ 𝐴 = ∅))
9 simprl 529 . . . . . . . 8 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → 𝑤 = 𝐺)
109fveq2d 5630 . . . . . . 7 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → (0g𝑤) = (0g𝐺))
11 gsumval.z . . . . . . 7 0 = (0g𝐺)
1210, 11eqtr4di 2280 . . . . . 6 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → (0g𝑤) = 0 )
1312eqeq2d 2241 . . . . 5 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → (𝑥 = (0g𝑤) ↔ 𝑥 = 0 ))
148, 13anbi12d 473 . . . 4 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → ((dom 𝑔 = ∅ ∧ 𝑥 = (0g𝑤)) ↔ (𝐴 = ∅ ∧ 𝑥 = 0 )))
157eqeq1d 2238 . . . . . . 7 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → (dom 𝑔 = (𝑚...𝑛) ↔ 𝐴 = (𝑚...𝑛)))
16 eqidd 2230 . . . . . . . . . 10 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → 𝑚 = 𝑚)
179fveq2d 5630 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → (+g𝑤) = (+g𝐺))
18 gsumval.p . . . . . . . . . . 11 + = (+g𝐺)
1917, 18eqtr4di 2280 . . . . . . . . . 10 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → (+g𝑤) = + )
2016, 19, 3seqeq123d 10673 . . . . . . . . 9 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → seq𝑚((+g𝑤), 𝑔) = seq𝑚( + , 𝐹))
2120fveq1d 5628 . . . . . . . 8 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → (seq𝑚((+g𝑤), 𝑔)‘𝑛) = (seq𝑚( + , 𝐹)‘𝑛))
2221eqeq2d 2241 . . . . . . 7 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → (𝑥 = (seq𝑚((+g𝑤), 𝑔)‘𝑛) ↔ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))
2315, 22anbi12d 473 . . . . . 6 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → ((dom 𝑔 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑔)‘𝑛)) ↔ (𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
2423rexbidv 2531 . . . . 5 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → (∃𝑛 ∈ (ℤ𝑚)(dom 𝑔 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑔)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
2524exbidv 1871 . . . 4 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → (∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑔 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑔)‘𝑛)) ↔ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
2614, 25orbi12d 798 . . 3 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → (((dom 𝑔 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑔 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑔)‘𝑛))) ↔ ((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
2726iotabidv 5300 . 2 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → (℩𝑥((dom 𝑔 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑔 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑔)‘𝑛)))) = (℩𝑥((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
28 gsumval.g . . 3 (𝜑𝐺𝑉)
2928elexd 2813 . 2 (𝜑𝐺 ∈ V)
30 gsumvalx.f . . 3 (𝜑𝐹𝑋)
3130elexd 2813 . 2 (𝜑𝐹 ∈ V)
32 unab 3471 . . . 4 ({𝑥 ∣ (𝐴 = ∅ ∧ 𝑥 = 0 )} ∪ {𝑥 ∣ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))}) = {𝑥 ∣ ((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))}
33 df-sn 3672 . . . . . . 7 { 0 } = {𝑥𝑥 = 0 }
34 fn0g 13403 . . . . . . . . . 10 0g Fn V
35 funfvex 5643 . . . . . . . . . . 11 ((Fun 0g𝐺 ∈ dom 0g) → (0g𝐺) ∈ V)
3635funfni 5422 . . . . . . . . . 10 ((0g Fn V ∧ 𝐺 ∈ V) → (0g𝐺) ∈ V)
3734, 29, 36sylancr 414 . . . . . . . . 9 (𝜑 → (0g𝐺) ∈ V)
3811, 37eqeltrid 2316 . . . . . . . 8 (𝜑0 ∈ V)
39 snexg 4267 . . . . . . . 8 ( 0 ∈ V → { 0 } ∈ V)
4038, 39syl 14 . . . . . . 7 (𝜑 → { 0 } ∈ V)
4133, 40eqeltrrid 2317 . . . . . 6 (𝜑 → {𝑥𝑥 = 0 } ∈ V)
42 simpr 110 . . . . . . . 8 ((𝐴 = ∅ ∧ 𝑥 = 0 ) → 𝑥 = 0 )
4342ss2abi 3296 . . . . . . 7 {𝑥 ∣ (𝐴 = ∅ ∧ 𝑥 = 0 )} ⊆ {𝑥𝑥 = 0 }
4443a1i 9 . . . . . 6 (𝜑 → {𝑥 ∣ (𝐴 = ∅ ∧ 𝑥 = 0 )} ⊆ {𝑥𝑥 = 0 })
4541, 44ssexd 4223 . . . . 5 (𝜑 → {𝑥 ∣ (𝐴 = ∅ ∧ 𝑥 = 0 )} ∈ V)
46 zex 9451 . . . . . . 7 ℤ ∈ V
4746, 46ab2rexex 6274 . . . . . 6 {𝑥 ∣ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)} ∈ V
48 df-rex 2514 . . . . . . . . . . . 12 (∃𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ∃𝑛(𝑛 ∈ (ℤ𝑚) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
49 eluzel2 9723 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ𝑚) → 𝑚 ∈ ℤ)
50 eluzelz 9727 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ𝑚) → 𝑛 ∈ ℤ)
5149, 50jca 306 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ𝑚) → (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ))
52 simpr 110 . . . . . . . . . . . . . . 15 ((𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))
5351, 52anim12i 338 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ𝑚) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))
54 anass 401 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ (𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
5553, 54sylib 122 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ𝑚) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
5655eximi 1646 . . . . . . . . . . . 12 (∃𝑛(𝑛 ∈ (ℤ𝑚) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → ∃𝑛(𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
5748, 56sylbi 121 . . . . . . . . . . 11 (∃𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → ∃𝑛(𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
58 19.42v 1953 . . . . . . . . . . 11 (∃𝑛(𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) ↔ (𝑚 ∈ ℤ ∧ ∃𝑛(𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
5957, 58sylib 122 . . . . . . . . . 10 (∃𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → (𝑚 ∈ ℤ ∧ ∃𝑛(𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
60 df-rex 2514 . . . . . . . . . . 11 (∃𝑛 ∈ ℤ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛) ↔ ∃𝑛(𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))
6160anbi2i 457 . . . . . . . . . 10 ((𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ (𝑚 ∈ ℤ ∧ ∃𝑛(𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
6259, 61sylibr 134 . . . . . . . . 9 (∃𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → (𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))
6362eximi 1646 . . . . . . . 8 (∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → ∃𝑚(𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))
64 df-rex 2514 . . . . . . . 8 (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛) ↔ ∃𝑚(𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))
6563, 64sylibr 134 . . . . . . 7 (∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))
6665ss2abi 3296 . . . . . 6 {𝑥 ∣ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))} ⊆ {𝑥 ∣ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)}
6747, 66ssexi 4221 . . . . 5 {𝑥 ∣ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))} ∈ V
68 unexg 4533 . . . . 5 (({𝑥 ∣ (𝐴 = ∅ ∧ 𝑥 = 0 )} ∈ V ∧ {𝑥 ∣ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))} ∈ V) → ({𝑥 ∣ (𝐴 = ∅ ∧ 𝑥 = 0 )} ∪ {𝑥 ∣ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))}) ∈ V)
6945, 67, 68sylancl 413 . . . 4 (𝜑 → ({𝑥 ∣ (𝐴 = ∅ ∧ 𝑥 = 0 )} ∪ {𝑥 ∣ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))}) ∈ V)
7032, 69eqeltrrid 2317 . . 3 (𝜑 → {𝑥 ∣ ((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))} ∈ V)
71 iotaexab 5296 . . 3 ({𝑥 ∣ ((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))} ∈ V → (℩𝑥((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))) ∈ V)
7270, 71syl 14 . 2 (𝜑 → (℩𝑥((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))) ∈ V)
732, 27, 29, 31, 72ovmpod 6131 1 (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 713   = wceq 1395  wex 1538  wcel 2200  {cab 2215  wrex 2509  Vcvv 2799  cun 3195  wss 3197  c0 3491  {csn 3666  dom cdm 4718  cio 5275   Fn wfn 5312  cfv 5317  (class class class)co 6000  cmpo 6002  cz 9442  cuz 9718  ...cfz 10200  seqcseq 10664  Basecbs 13027  +gcplusg 13105  0gc0g 13284   Σg cgsu 13285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-recs 6449  df-frec 6535  df-neg 8316  df-inn 9107  df-z 9443  df-uz 9719  df-seqfrec 10665  df-ndx 13030  df-slot 13031  df-base 13033  df-0g 13286  df-igsum 13287
This theorem is referenced by:  igsumval  13418  gsumpropd  13420  gsumpropd2  13421
  Copyright terms: Public domain W3C validator