ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  igsumvalx GIF version

Theorem igsumvalx 12972
Description: Expand out the substitutions in df-igsum 12870. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
gsumval.b 𝐵 = (Base‘𝐺)
gsumval.z 0 = (0g𝐺)
gsumval.p + = (+g𝐺)
gsumval.g (𝜑𝐺𝑉)
gsumvalx.f (𝜑𝐹𝑋)
gsumvalx.a (𝜑 → dom 𝐹 = 𝐴)
Assertion
Ref Expression
igsumvalx (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
Distinct variable groups:   𝑥, +   𝑥, 0   𝑚,𝐹,𝑛,𝑥   𝑚,𝐺,𝑛,𝑥   𝜑,𝑚,𝑛,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑚,𝑛)   𝐵(𝑥,𝑚,𝑛)   + (𝑚,𝑛)   𝑉(𝑥,𝑚,𝑛)   𝑋(𝑥,𝑚,𝑛)   0 (𝑚,𝑛)

Proof of Theorem igsumvalx
Dummy variables 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-igsum 12870 . . 3 Σg = (𝑤 ∈ V, 𝑔 ∈ V ↦ (℩𝑥((dom 𝑔 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑔 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑔)‘𝑛)))))
21a1i 9 . 2 (𝜑 → Σg = (𝑤 ∈ V, 𝑔 ∈ V ↦ (℩𝑥((dom 𝑔 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑔 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑔)‘𝑛))))))
3 simprr 531 . . . . . . . 8 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → 𝑔 = 𝐹)
43dmeqd 4864 . . . . . . 7 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → dom 𝑔 = dom 𝐹)
5 gsumvalx.a . . . . . . . 8 (𝜑 → dom 𝐹 = 𝐴)
65adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → dom 𝐹 = 𝐴)
74, 6eqtrd 2226 . . . . . 6 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → dom 𝑔 = 𝐴)
87eqeq1d 2202 . . . . 5 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → (dom 𝑔 = ∅ ↔ 𝐴 = ∅))
9 simprl 529 . . . . . . . 8 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → 𝑤 = 𝐺)
109fveq2d 5558 . . . . . . 7 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → (0g𝑤) = (0g𝐺))
11 gsumval.z . . . . . . 7 0 = (0g𝐺)
1210, 11eqtr4di 2244 . . . . . 6 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → (0g𝑤) = 0 )
1312eqeq2d 2205 . . . . 5 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → (𝑥 = (0g𝑤) ↔ 𝑥 = 0 ))
148, 13anbi12d 473 . . . 4 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → ((dom 𝑔 = ∅ ∧ 𝑥 = (0g𝑤)) ↔ (𝐴 = ∅ ∧ 𝑥 = 0 )))
157eqeq1d 2202 . . . . . . 7 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → (dom 𝑔 = (𝑚...𝑛) ↔ 𝐴 = (𝑚...𝑛)))
16 eqidd 2194 . . . . . . . . . 10 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → 𝑚 = 𝑚)
179fveq2d 5558 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → (+g𝑤) = (+g𝐺))
18 gsumval.p . . . . . . . . . . 11 + = (+g𝐺)
1917, 18eqtr4di 2244 . . . . . . . . . 10 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → (+g𝑤) = + )
2016, 19, 3seqeq123d 10527 . . . . . . . . 9 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → seq𝑚((+g𝑤), 𝑔) = seq𝑚( + , 𝐹))
2120fveq1d 5556 . . . . . . . 8 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → (seq𝑚((+g𝑤), 𝑔)‘𝑛) = (seq𝑚( + , 𝐹)‘𝑛))
2221eqeq2d 2205 . . . . . . 7 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → (𝑥 = (seq𝑚((+g𝑤), 𝑔)‘𝑛) ↔ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))
2315, 22anbi12d 473 . . . . . 6 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → ((dom 𝑔 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑔)‘𝑛)) ↔ (𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
2423rexbidv 2495 . . . . 5 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → (∃𝑛 ∈ (ℤ𝑚)(dom 𝑔 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑔)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
2524exbidv 1836 . . . 4 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → (∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑔 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑔)‘𝑛)) ↔ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
2614, 25orbi12d 794 . . 3 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → (((dom 𝑔 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑔 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑔)‘𝑛))) ↔ ((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
2726iotabidv 5237 . 2 ((𝜑 ∧ (𝑤 = 𝐺𝑔 = 𝐹)) → (℩𝑥((dom 𝑔 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑔 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑔)‘𝑛)))) = (℩𝑥((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
28 gsumval.g . . 3 (𝜑𝐺𝑉)
2928elexd 2773 . 2 (𝜑𝐺 ∈ V)
30 gsumvalx.f . . 3 (𝜑𝐹𝑋)
3130elexd 2773 . 2 (𝜑𝐹 ∈ V)
32 unab 3426 . . . 4 ({𝑥 ∣ (𝐴 = ∅ ∧ 𝑥 = 0 )} ∪ {𝑥 ∣ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))}) = {𝑥 ∣ ((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))}
33 df-sn 3624 . . . . . . 7 { 0 } = {𝑥𝑥 = 0 }
34 fn0g 12958 . . . . . . . . . 10 0g Fn V
35 funfvex 5571 . . . . . . . . . . 11 ((Fun 0g𝐺 ∈ dom 0g) → (0g𝐺) ∈ V)
3635funfni 5354 . . . . . . . . . 10 ((0g Fn V ∧ 𝐺 ∈ V) → (0g𝐺) ∈ V)
3734, 29, 36sylancr 414 . . . . . . . . 9 (𝜑 → (0g𝐺) ∈ V)
3811, 37eqeltrid 2280 . . . . . . . 8 (𝜑0 ∈ V)
39 snexg 4213 . . . . . . . 8 ( 0 ∈ V → { 0 } ∈ V)
4038, 39syl 14 . . . . . . 7 (𝜑 → { 0 } ∈ V)
4133, 40eqeltrrid 2281 . . . . . 6 (𝜑 → {𝑥𝑥 = 0 } ∈ V)
42 simpr 110 . . . . . . . 8 ((𝐴 = ∅ ∧ 𝑥 = 0 ) → 𝑥 = 0 )
4342ss2abi 3251 . . . . . . 7 {𝑥 ∣ (𝐴 = ∅ ∧ 𝑥 = 0 )} ⊆ {𝑥𝑥 = 0 }
4443a1i 9 . . . . . 6 (𝜑 → {𝑥 ∣ (𝐴 = ∅ ∧ 𝑥 = 0 )} ⊆ {𝑥𝑥 = 0 })
4541, 44ssexd 4169 . . . . 5 (𝜑 → {𝑥 ∣ (𝐴 = ∅ ∧ 𝑥 = 0 )} ∈ V)
46 zex 9326 . . . . . . 7 ℤ ∈ V
4746, 46ab2rexex 6183 . . . . . 6 {𝑥 ∣ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)} ∈ V
48 df-rex 2478 . . . . . . . . . . . 12 (∃𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ∃𝑛(𝑛 ∈ (ℤ𝑚) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
49 eluzel2 9597 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ𝑚) → 𝑚 ∈ ℤ)
50 eluzelz 9601 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ𝑚) → 𝑛 ∈ ℤ)
5149, 50jca 306 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ𝑚) → (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ))
52 simpr 110 . . . . . . . . . . . . . . 15 ((𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))
5351, 52anim12i 338 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ𝑚) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))
54 anass 401 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ (𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
5553, 54sylib 122 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ𝑚) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
5655eximi 1611 . . . . . . . . . . . 12 (∃𝑛(𝑛 ∈ (ℤ𝑚) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → ∃𝑛(𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
5748, 56sylbi 121 . . . . . . . . . . 11 (∃𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → ∃𝑛(𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
58 19.42v 1918 . . . . . . . . . . 11 (∃𝑛(𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) ↔ (𝑚 ∈ ℤ ∧ ∃𝑛(𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
5957, 58sylib 122 . . . . . . . . . 10 (∃𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → (𝑚 ∈ ℤ ∧ ∃𝑛(𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
60 df-rex 2478 . . . . . . . . . . 11 (∃𝑛 ∈ ℤ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛) ↔ ∃𝑛(𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))
6160anbi2i 457 . . . . . . . . . 10 ((𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ (𝑚 ∈ ℤ ∧ ∃𝑛(𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))
6259, 61sylibr 134 . . . . . . . . 9 (∃𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → (𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))
6362eximi 1611 . . . . . . . 8 (∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → ∃𝑚(𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))
64 df-rex 2478 . . . . . . . 8 (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛) ↔ ∃𝑚(𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))
6563, 64sylibr 134 . . . . . . 7 (∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))
6665ss2abi 3251 . . . . . 6 {𝑥 ∣ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))} ⊆ {𝑥 ∣ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)}
6747, 66ssexi 4167 . . . . 5 {𝑥 ∣ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))} ∈ V
68 unexg 4474 . . . . 5 (({𝑥 ∣ (𝐴 = ∅ ∧ 𝑥 = 0 )} ∈ V ∧ {𝑥 ∣ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))} ∈ V) → ({𝑥 ∣ (𝐴 = ∅ ∧ 𝑥 = 0 )} ∪ {𝑥 ∣ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))}) ∈ V)
6945, 67, 68sylancl 413 . . . 4 (𝜑 → ({𝑥 ∣ (𝐴 = ∅ ∧ 𝑥 = 0 )} ∪ {𝑥 ∣ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))}) ∈ V)
7032, 69eqeltrrid 2281 . . 3 (𝜑 → {𝑥 ∣ ((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))} ∈ V)
71 iotaexab 5233 . . 3 ({𝑥 ∣ ((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))} ∈ V → (℩𝑥((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))) ∈ V)
7270, 71syl 14 . 2 (𝜑 → (℩𝑥((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))) ∈ V)
732, 27, 29, 31, 72ovmpod 6046 1 (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1364  wex 1503  wcel 2164  {cab 2179  wrex 2473  Vcvv 2760  cun 3151  wss 3153  c0 3446  {csn 3618  dom cdm 4659  cio 5213   Fn wfn 5249  cfv 5254  (class class class)co 5918  cmpo 5920  cz 9317  cuz 9592  ...cfz 10074  seqcseq 10518  Basecbs 12618  +gcplusg 12695  0gc0g 12867   Σg cgsu 12868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-recs 6358  df-frec 6444  df-neg 8193  df-inn 8983  df-z 9318  df-uz 9593  df-seqfrec 10519  df-ndx 12621  df-slot 12622  df-base 12624  df-0g 12869  df-igsum 12870
This theorem is referenced by:  igsumval  12973  gsumpropd  12975  gsumpropd2  12976
  Copyright terms: Public domain W3C validator