| Step | Hyp | Ref
| Expression |
| 1 | | df-igsum 12930 |
. . 3
⊢
Σg = (𝑤 ∈ V, 𝑔 ∈ V ↦ (℩𝑥((dom 𝑔 = ∅ ∧ 𝑥 = (0g‘𝑤)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑔 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑔)‘𝑛))))) |
| 2 | 1 | a1i 9 |
. 2
⊢ (𝜑 → Σg
= (𝑤 ∈ V, 𝑔 ∈ V ↦ (℩𝑥((dom 𝑔 = ∅ ∧ 𝑥 = (0g‘𝑤)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑔 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑔)‘𝑛)))))) |
| 3 | | simprr 531 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → 𝑔 = 𝐹) |
| 4 | 3 | dmeqd 4868 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → dom 𝑔 = dom 𝐹) |
| 5 | | gsumvalx.a |
. . . . . . . 8
⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 6 | 5 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → dom 𝐹 = 𝐴) |
| 7 | 4, 6 | eqtrd 2229 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → dom 𝑔 = 𝐴) |
| 8 | 7 | eqeq1d 2205 |
. . . . 5
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → (dom 𝑔 = ∅ ↔ 𝐴 = ∅)) |
| 9 | | simprl 529 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → 𝑤 = 𝐺) |
| 10 | 9 | fveq2d 5562 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → (0g‘𝑤) = (0g‘𝐺)) |
| 11 | | gsumval.z |
. . . . . . 7
⊢ 0 =
(0g‘𝐺) |
| 12 | 10, 11 | eqtr4di 2247 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → (0g‘𝑤) = 0 ) |
| 13 | 12 | eqeq2d 2208 |
. . . . 5
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → (𝑥 = (0g‘𝑤) ↔ 𝑥 = 0 )) |
| 14 | 8, 13 | anbi12d 473 |
. . . 4
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → ((dom 𝑔 = ∅ ∧ 𝑥 = (0g‘𝑤)) ↔ (𝐴 = ∅ ∧ 𝑥 = 0 ))) |
| 15 | 7 | eqeq1d 2205 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → (dom 𝑔 = (𝑚...𝑛) ↔ 𝐴 = (𝑚...𝑛))) |
| 16 | | eqidd 2197 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → 𝑚 = 𝑚) |
| 17 | 9 | fveq2d 5562 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → (+g‘𝑤) = (+g‘𝐺)) |
| 18 | | gsumval.p |
. . . . . . . . . . 11
⊢ + =
(+g‘𝐺) |
| 19 | 17, 18 | eqtr4di 2247 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → (+g‘𝑤) = + ) |
| 20 | 16, 19, 3 | seqeq123d 10548 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → seq𝑚((+g‘𝑤), 𝑔) = seq𝑚( + , 𝐹)) |
| 21 | 20 | fveq1d 5560 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → (seq𝑚((+g‘𝑤), 𝑔)‘𝑛) = (seq𝑚( + , 𝐹)‘𝑛)) |
| 22 | 21 | eqeq2d 2208 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → (𝑥 = (seq𝑚((+g‘𝑤), 𝑔)‘𝑛) ↔ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) |
| 23 | 15, 22 | anbi12d 473 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → ((dom 𝑔 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑔)‘𝑛)) ↔ (𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))) |
| 24 | 23 | rexbidv 2498 |
. . . . 5
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → (∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑔 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑔)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))) |
| 25 | 24 | exbidv 1839 |
. . . 4
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → (∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑔 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑔)‘𝑛)) ↔ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))) |
| 26 | 14, 25 | orbi12d 794 |
. . 3
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → (((dom 𝑔 = ∅ ∧ 𝑥 = (0g‘𝑤)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑔 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑔)‘𝑛))) ↔ ((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))) |
| 27 | 26 | iotabidv 5241 |
. 2
⊢ ((𝜑 ∧ (𝑤 = 𝐺 ∧ 𝑔 = 𝐹)) → (℩𝑥((dom 𝑔 = ∅ ∧ 𝑥 = (0g‘𝑤)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑔 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑔)‘𝑛)))) = (℩𝑥((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))) |
| 28 | | gsumval.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| 29 | 28 | elexd 2776 |
. 2
⊢ (𝜑 → 𝐺 ∈ V) |
| 30 | | gsumvalx.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ 𝑋) |
| 31 | 30 | elexd 2776 |
. 2
⊢ (𝜑 → 𝐹 ∈ V) |
| 32 | | unab 3430 |
. . . 4
⊢ ({𝑥 ∣ (𝐴 = ∅ ∧ 𝑥 = 0 )} ∪ {𝑥 ∣ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))}) = {𝑥 ∣ ((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))} |
| 33 | | df-sn 3628 |
. . . . . . 7
⊢ { 0 } = {𝑥 ∣ 𝑥 = 0 } |
| 34 | | fn0g 13018 |
. . . . . . . . . 10
⊢
0g Fn V |
| 35 | | funfvex 5575 |
. . . . . . . . . . 11
⊢ ((Fun
0g ∧ 𝐺
∈ dom 0g) → (0g‘𝐺) ∈ V) |
| 36 | 35 | funfni 5358 |
. . . . . . . . . 10
⊢
((0g Fn V ∧ 𝐺 ∈ V) → (0g‘𝐺) ∈ V) |
| 37 | 34, 29, 36 | sylancr 414 |
. . . . . . . . 9
⊢ (𝜑 → (0g‘𝐺) ∈ V) |
| 38 | 11, 37 | eqeltrid 2283 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈ V) |
| 39 | | snexg 4217 |
. . . . . . . 8
⊢ ( 0 ∈ V
→ { 0 } ∈
V) |
| 40 | 38, 39 | syl 14 |
. . . . . . 7
⊢ (𝜑 → { 0 } ∈
V) |
| 41 | 33, 40 | eqeltrrid 2284 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∣ 𝑥 = 0 } ∈
V) |
| 42 | | simpr 110 |
. . . . . . . 8
⊢ ((𝐴 = ∅ ∧ 𝑥 = 0 ) → 𝑥 = 0 ) |
| 43 | 42 | ss2abi 3255 |
. . . . . . 7
⊢ {𝑥 ∣ (𝐴 = ∅ ∧ 𝑥 = 0 )} ⊆ {𝑥 ∣ 𝑥 = 0 } |
| 44 | 43 | a1i 9 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∣ (𝐴 = ∅ ∧ 𝑥 = 0 )} ⊆ {𝑥 ∣ 𝑥 = 0 }) |
| 45 | 41, 44 | ssexd 4173 |
. . . . 5
⊢ (𝜑 → {𝑥 ∣ (𝐴 = ∅ ∧ 𝑥 = 0 )} ∈
V) |
| 46 | | zex 9335 |
. . . . . . 7
⊢ ℤ
∈ V |
| 47 | 46, 46 | ab2rexex 6188 |
. . . . . 6
⊢ {𝑥 ∣ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)} ∈ V |
| 48 | | df-rex 2481 |
. . . . . . . . . . . 12
⊢
(∃𝑛 ∈
(ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ∃𝑛(𝑛 ∈ (ℤ≥‘𝑚) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))) |
| 49 | | eluzel2 9606 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈
(ℤ≥‘𝑚) → 𝑚 ∈ ℤ) |
| 50 | | eluzelz 9610 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈
(ℤ≥‘𝑚) → 𝑛 ∈ ℤ) |
| 51 | 49, 50 | jca 306 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈
(ℤ≥‘𝑚) → (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) |
| 52 | | simpr 110 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) |
| 53 | 51, 52 | anim12i 338 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈
(ℤ≥‘𝑚) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) |
| 54 | | anass 401 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ (𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))) |
| 55 | 53, 54 | sylib 122 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈
(ℤ≥‘𝑚) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → (𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))) |
| 56 | 55 | eximi 1614 |
. . . . . . . . . . . 12
⊢
(∃𝑛(𝑛 ∈
(ℤ≥‘𝑚) ∧ (𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) → ∃𝑛(𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))) |
| 57 | 48, 56 | sylbi 121 |
. . . . . . . . . . 11
⊢
(∃𝑛 ∈
(ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → ∃𝑛(𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))) |
| 58 | | 19.42v 1921 |
. . . . . . . . . . 11
⊢
(∃𝑛(𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) ↔ (𝑚 ∈ ℤ ∧ ∃𝑛(𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))) |
| 59 | 57, 58 | sylib 122 |
. . . . . . . . . 10
⊢
(∃𝑛 ∈
(ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → (𝑚 ∈ ℤ ∧ ∃𝑛(𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))) |
| 60 | | df-rex 2481 |
. . . . . . . . . . 11
⊢
(∃𝑛 ∈
ℤ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛) ↔ ∃𝑛(𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) |
| 61 | 60 | anbi2i 457 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℤ ∧
∃𝑛 ∈ ℤ
𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ (𝑚 ∈ ℤ ∧ ∃𝑛(𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))) |
| 62 | 59, 61 | sylibr 134 |
. . . . . . . . 9
⊢
(∃𝑛 ∈
(ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → (𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) |
| 63 | 62 | eximi 1614 |
. . . . . . . 8
⊢
(∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → ∃𝑚(𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) |
| 64 | | df-rex 2481 |
. . . . . . . 8
⊢
(∃𝑚 ∈
ℤ ∃𝑛 ∈
ℤ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛) ↔ ∃𝑚(𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))) |
| 65 | 63, 64 | sylibr 134 |
. . . . . . 7
⊢
(∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) → ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)) |
| 66 | 65 | ss2abi 3255 |
. . . . . 6
⊢ {𝑥 ∣ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))} ⊆ {𝑥 ∣ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)} |
| 67 | 47, 66 | ssexi 4171 |
. . . . 5
⊢ {𝑥 ∣ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))} ∈ V |
| 68 | | unexg 4478 |
. . . . 5
⊢ (({𝑥 ∣ (𝐴 = ∅ ∧ 𝑥 = 0 )} ∈ V ∧ {𝑥 ∣ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))} ∈ V) → ({𝑥 ∣ (𝐴 = ∅ ∧ 𝑥 = 0 )} ∪ {𝑥 ∣ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))}) ∈ V) |
| 69 | 45, 67, 68 | sylancl 413 |
. . . 4
⊢ (𝜑 → ({𝑥 ∣ (𝐴 = ∅ ∧ 𝑥 = 0 )} ∪ {𝑥 ∣ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))}) ∈ V) |
| 70 | 32, 69 | eqeltrrid 2284 |
. . 3
⊢ (𝜑 → {𝑥 ∣ ((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))} ∈ V) |
| 71 | | iotaexab 5237 |
. . 3
⊢ ({𝑥 ∣ ((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))} ∈ V → (℩𝑥((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))) ∈ V) |
| 72 | 70, 71 | syl 14 |
. 2
⊢ (𝜑 → (℩𝑥((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))) ∈ V) |
| 73 | 2, 27, 29, 31, 72 | ovmpod 6050 |
1
⊢ (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))))) |