ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fngsum GIF version

Theorem fngsum 13407
Description: Iterated sum has a universal domain. (Contributed by Jim Kingdon, 28-Jun-2025.)
Assertion
Ref Expression
fngsum Σg Fn (V × V)

Proof of Theorem fngsum
Dummy variables 𝑓 𝑚 𝑛 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-igsum 13278 . 2 Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ (℩𝑥((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))))
2 unab 3471 . . . 4 ({𝑥 ∣ (dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤))} ∪ {𝑥 ∣ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))}) = {𝑥 ∣ ((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))}
3 df-sn 3672 . . . . . . 7 {(0g𝑤)} = {𝑥𝑥 = (0g𝑤)}
4 fn0g 13394 . . . . . . . . 9 0g Fn V
5 vex 2802 . . . . . . . . 9 𝑤 ∈ V
6 funfvex 5640 . . . . . . . . . 10 ((Fun 0g𝑤 ∈ dom 0g) → (0g𝑤) ∈ V)
76funfni 5419 . . . . . . . . 9 ((0g Fn V ∧ 𝑤 ∈ V) → (0g𝑤) ∈ V)
84, 5, 7mp2an 426 . . . . . . . 8 (0g𝑤) ∈ V
98snex 4268 . . . . . . 7 {(0g𝑤)} ∈ V
103, 9eqeltrri 2303 . . . . . 6 {𝑥𝑥 = (0g𝑤)} ∈ V
11 simpr 110 . . . . . . 7 ((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) → 𝑥 = (0g𝑤))
1211ss2abi 3296 . . . . . 6 {𝑥 ∣ (dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤))} ⊆ {𝑥𝑥 = (0g𝑤)}
1310, 12ssexi 4221 . . . . 5 {𝑥 ∣ (dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤))} ∈ V
14 zex 9443 . . . . . . 7 ℤ ∈ V
1514, 14ab2rexex 6266 . . . . . 6 {𝑥 ∣ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)} ∈ V
16 df-rex 2514 . . . . . . . . . . . 12 (∃𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) ↔ ∃𝑛(𝑛 ∈ (ℤ𝑚) ∧ (dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))))
17 eluzel2 9715 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ𝑚) → 𝑚 ∈ ℤ)
18 eluzelz 9719 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ𝑚) → 𝑛 ∈ ℤ)
1917, 18jca 306 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ𝑚) → (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ))
20 simpr 110 . . . . . . . . . . . . . . 15 ((dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) → 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))
2119, 20anim12i 338 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ𝑚) ∧ (dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))) → ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))
22 anass 401 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) ↔ (𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))))
2321, 22sylib 122 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ𝑚) ∧ (dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))) → (𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))))
2423eximi 1646 . . . . . . . . . . . 12 (∃𝑛(𝑛 ∈ (ℤ𝑚) ∧ (dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))) → ∃𝑛(𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))))
2516, 24sylbi 121 . . . . . . . . . . 11 (∃𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) → ∃𝑛(𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))))
26 19.42v 1953 . . . . . . . . . . 11 (∃𝑛(𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))) ↔ (𝑚 ∈ ℤ ∧ ∃𝑛(𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))))
2725, 26sylib 122 . . . . . . . . . 10 (∃𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) → (𝑚 ∈ ℤ ∧ ∃𝑛(𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))))
28 df-rex 2514 . . . . . . . . . . 11 (∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛) ↔ ∃𝑛(𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))
2928anbi2i 457 . . . . . . . . . 10 ((𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) ↔ (𝑚 ∈ ℤ ∧ ∃𝑛(𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))))
3027, 29sylibr 134 . . . . . . . . 9 (∃𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) → (𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))
3130eximi 1646 . . . . . . . 8 (∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) → ∃𝑚(𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))
32 df-rex 2514 . . . . . . . 8 (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛) ↔ ∃𝑚(𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))
3331, 32sylibr 134 . . . . . . 7 (∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) → ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))
3433ss2abi 3296 . . . . . 6 {𝑥 ∣ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))} ⊆ {𝑥 ∣ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)}
3515, 34ssexi 4221 . . . . 5 {𝑥 ∣ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))} ∈ V
3613, 35unex 4529 . . . 4 ({𝑥 ∣ (dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤))} ∪ {𝑥 ∣ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))}) ∈ V
372, 36eqeltrri 2303 . . 3 {𝑥 ∣ ((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))} ∈ V
38 iotaexab 5293 . . 3 ({𝑥 ∣ ((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))} ∈ V → (℩𝑥((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))) ∈ V)
3937, 38ax-mp 5 . 2 (℩𝑥((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))) ∈ V
401, 39fnmpoi 6339 1 Σg Fn (V × V)
Colors of variables: wff set class
Syntax hints:  wa 104  wo 713   = wceq 1395  wex 1538  wcel 2200  {cab 2215  wrex 2509  Vcvv 2799  cun 3195  c0 3491  {csn 3666   × cxp 4714  dom cdm 4716  cio 5272   Fn wfn 5309  cfv 5314  (class class class)co 5994  cz 9434  cuz 9710  ...cfz 10192  seqcseq 10656  +gcplusg 13096  0gc0g 13275   Σg cgsu 13276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-neg 8308  df-inn 9099  df-z 9435  df-uz 9711  df-ndx 13021  df-slot 13022  df-base 13024  df-0g 13277  df-igsum 13278
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator