ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fngsum GIF version

Theorem fngsum 13264
Description: Iterated sum has a universal domain. (Contributed by Jim Kingdon, 28-Jun-2025.)
Assertion
Ref Expression
fngsum Σg Fn (V × V)

Proof of Theorem fngsum
Dummy variables 𝑓 𝑚 𝑛 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-igsum 13135 . 2 Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ (℩𝑥((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))))
2 unab 3441 . . . 4 ({𝑥 ∣ (dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤))} ∪ {𝑥 ∣ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))}) = {𝑥 ∣ ((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))}
3 df-sn 3640 . . . . . . 7 {(0g𝑤)} = {𝑥𝑥 = (0g𝑤)}
4 fn0g 13251 . . . . . . . . 9 0g Fn V
5 vex 2776 . . . . . . . . 9 𝑤 ∈ V
6 funfvex 5600 . . . . . . . . . 10 ((Fun 0g𝑤 ∈ dom 0g) → (0g𝑤) ∈ V)
76funfni 5381 . . . . . . . . 9 ((0g Fn V ∧ 𝑤 ∈ V) → (0g𝑤) ∈ V)
84, 5, 7mp2an 426 . . . . . . . 8 (0g𝑤) ∈ V
98snex 4233 . . . . . . 7 {(0g𝑤)} ∈ V
103, 9eqeltrri 2280 . . . . . 6 {𝑥𝑥 = (0g𝑤)} ∈ V
11 simpr 110 . . . . . . 7 ((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) → 𝑥 = (0g𝑤))
1211ss2abi 3266 . . . . . 6 {𝑥 ∣ (dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤))} ⊆ {𝑥𝑥 = (0g𝑤)}
1310, 12ssexi 4186 . . . . 5 {𝑥 ∣ (dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤))} ∈ V
14 zex 9388 . . . . . . 7 ℤ ∈ V
1514, 14ab2rexex 6223 . . . . . 6 {𝑥 ∣ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)} ∈ V
16 df-rex 2491 . . . . . . . . . . . 12 (∃𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) ↔ ∃𝑛(𝑛 ∈ (ℤ𝑚) ∧ (dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))))
17 eluzel2 9660 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ𝑚) → 𝑚 ∈ ℤ)
18 eluzelz 9664 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ𝑚) → 𝑛 ∈ ℤ)
1917, 18jca 306 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ𝑚) → (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ))
20 simpr 110 . . . . . . . . . . . . . . 15 ((dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) → 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))
2119, 20anim12i 338 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ𝑚) ∧ (dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))) → ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))
22 anass 401 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) ↔ (𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))))
2321, 22sylib 122 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ𝑚) ∧ (dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))) → (𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))))
2423eximi 1624 . . . . . . . . . . . 12 (∃𝑛(𝑛 ∈ (ℤ𝑚) ∧ (dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))) → ∃𝑛(𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))))
2516, 24sylbi 121 . . . . . . . . . . 11 (∃𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) → ∃𝑛(𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))))
26 19.42v 1931 . . . . . . . . . . 11 (∃𝑛(𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))) ↔ (𝑚 ∈ ℤ ∧ ∃𝑛(𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))))
2725, 26sylib 122 . . . . . . . . . 10 (∃𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) → (𝑚 ∈ ℤ ∧ ∃𝑛(𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))))
28 df-rex 2491 . . . . . . . . . . 11 (∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛) ↔ ∃𝑛(𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))
2928anbi2i 457 . . . . . . . . . 10 ((𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) ↔ (𝑚 ∈ ℤ ∧ ∃𝑛(𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))))
3027, 29sylibr 134 . . . . . . . . 9 (∃𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) → (𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))
3130eximi 1624 . . . . . . . 8 (∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) → ∃𝑚(𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))
32 df-rex 2491 . . . . . . . 8 (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛) ↔ ∃𝑚(𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))
3331, 32sylibr 134 . . . . . . 7 (∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) → ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))
3433ss2abi 3266 . . . . . 6 {𝑥 ∣ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))} ⊆ {𝑥 ∣ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)}
3515, 34ssexi 4186 . . . . 5 {𝑥 ∣ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))} ∈ V
3613, 35unex 4492 . . . 4 ({𝑥 ∣ (dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤))} ∪ {𝑥 ∣ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))}) ∈ V
372, 36eqeltrri 2280 . . 3 {𝑥 ∣ ((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))} ∈ V
38 iotaexab 5255 . . 3 ({𝑥 ∣ ((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))} ∈ V → (℩𝑥((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))) ∈ V)
3937, 38ax-mp 5 . 2 (℩𝑥((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))) ∈ V
401, 39fnmpoi 6296 1 Σg Fn (V × V)
Colors of variables: wff set class
Syntax hints:  wa 104  wo 710   = wceq 1373  wex 1516  wcel 2177  {cab 2192  wrex 2486  Vcvv 2773  cun 3165  c0 3461  {csn 3634   × cxp 4677  dom cdm 4679  cio 5235   Fn wfn 5271  cfv 5276  (class class class)co 5951  cz 9379  cuz 9655  ...cfz 10137  seqcseq 10599  +gcplusg 12953  0gc0g 13132   Σg cgsu 13133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-cnex 8023  ax-resscn 8024  ax-1re 8026  ax-addrcl 8029
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-neg 8253  df-inn 9044  df-z 9380  df-uz 9656  df-ndx 12879  df-slot 12880  df-base 12882  df-0g 13134  df-igsum 13135
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator