ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fngsum GIF version

Theorem fngsum 12971
Description: Iterated sum has a universal domain. (Contributed by Jim Kingdon, 28-Jun-2025.)
Assertion
Ref Expression
fngsum Σg Fn (V × V)

Proof of Theorem fngsum
Dummy variables 𝑓 𝑚 𝑛 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-igsum 12870 . 2 Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ (℩𝑥((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))))
2 unab 3426 . . . 4 ({𝑥 ∣ (dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤))} ∪ {𝑥 ∣ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))}) = {𝑥 ∣ ((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))}
3 df-sn 3624 . . . . . . 7 {(0g𝑤)} = {𝑥𝑥 = (0g𝑤)}
4 fn0g 12958 . . . . . . . . 9 0g Fn V
5 vex 2763 . . . . . . . . 9 𝑤 ∈ V
6 funfvex 5571 . . . . . . . . . 10 ((Fun 0g𝑤 ∈ dom 0g) → (0g𝑤) ∈ V)
76funfni 5354 . . . . . . . . 9 ((0g Fn V ∧ 𝑤 ∈ V) → (0g𝑤) ∈ V)
84, 5, 7mp2an 426 . . . . . . . 8 (0g𝑤) ∈ V
98snex 4214 . . . . . . 7 {(0g𝑤)} ∈ V
103, 9eqeltrri 2267 . . . . . 6 {𝑥𝑥 = (0g𝑤)} ∈ V
11 simpr 110 . . . . . . 7 ((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) → 𝑥 = (0g𝑤))
1211ss2abi 3251 . . . . . 6 {𝑥 ∣ (dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤))} ⊆ {𝑥𝑥 = (0g𝑤)}
1310, 12ssexi 4167 . . . . 5 {𝑥 ∣ (dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤))} ∈ V
14 zex 9326 . . . . . . 7 ℤ ∈ V
1514, 14ab2rexex 6183 . . . . . 6 {𝑥 ∣ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)} ∈ V
16 df-rex 2478 . . . . . . . . . . . 12 (∃𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) ↔ ∃𝑛(𝑛 ∈ (ℤ𝑚) ∧ (dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))))
17 eluzel2 9597 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ𝑚) → 𝑚 ∈ ℤ)
18 eluzelz 9601 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ𝑚) → 𝑛 ∈ ℤ)
1917, 18jca 306 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ𝑚) → (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ))
20 simpr 110 . . . . . . . . . . . . . . 15 ((dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) → 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))
2119, 20anim12i 338 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ𝑚) ∧ (dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))) → ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))
22 anass 401 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) ↔ (𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))))
2321, 22sylib 122 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ𝑚) ∧ (dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))) → (𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))))
2423eximi 1611 . . . . . . . . . . . 12 (∃𝑛(𝑛 ∈ (ℤ𝑚) ∧ (dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))) → ∃𝑛(𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))))
2516, 24sylbi 121 . . . . . . . . . . 11 (∃𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) → ∃𝑛(𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))))
26 19.42v 1918 . . . . . . . . . . 11 (∃𝑛(𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))) ↔ (𝑚 ∈ ℤ ∧ ∃𝑛(𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))))
2725, 26sylib 122 . . . . . . . . . 10 (∃𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) → (𝑚 ∈ ℤ ∧ ∃𝑛(𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))))
28 df-rex 2478 . . . . . . . . . . 11 (∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛) ↔ ∃𝑛(𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))
2928anbi2i 457 . . . . . . . . . 10 ((𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) ↔ (𝑚 ∈ ℤ ∧ ∃𝑛(𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))))
3027, 29sylibr 134 . . . . . . . . 9 (∃𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) → (𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))
3130eximi 1611 . . . . . . . 8 (∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) → ∃𝑚(𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))
32 df-rex 2478 . . . . . . . 8 (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛) ↔ ∃𝑚(𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))
3331, 32sylibr 134 . . . . . . 7 (∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) → ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))
3433ss2abi 3251 . . . . . 6 {𝑥 ∣ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))} ⊆ {𝑥 ∣ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)}
3515, 34ssexi 4167 . . . . 5 {𝑥 ∣ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))} ∈ V
3613, 35unex 4472 . . . 4 ({𝑥 ∣ (dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤))} ∪ {𝑥 ∣ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))}) ∈ V
372, 36eqeltrri 2267 . . 3 {𝑥 ∣ ((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))} ∈ V
38 iotaexab 5233 . . 3 ({𝑥 ∣ ((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))} ∈ V → (℩𝑥((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))) ∈ V)
3937, 38ax-mp 5 . 2 (℩𝑥((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))) ∈ V
401, 39fnmpoi 6257 1 Σg Fn (V × V)
Colors of variables: wff set class
Syntax hints:  wa 104  wo 709   = wceq 1364  wex 1503  wcel 2164  {cab 2179  wrex 2473  Vcvv 2760  cun 3151  c0 3446  {csn 3618   × cxp 4657  dom cdm 4659  cio 5213   Fn wfn 5249  cfv 5254  (class class class)co 5918  cz 9317  cuz 9592  ...cfz 10074  seqcseq 10518  +gcplusg 12695  0gc0g 12867   Σg cgsu 12868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-neg 8193  df-inn 8983  df-z 9318  df-uz 9593  df-ndx 12621  df-slot 12622  df-base 12624  df-0g 12869  df-igsum 12870
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator