ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fngsum GIF version

Theorem fngsum 13090
Description: Iterated sum has a universal domain. (Contributed by Jim Kingdon, 28-Jun-2025.)
Assertion
Ref Expression
fngsum Σg Fn (V × V)

Proof of Theorem fngsum
Dummy variables 𝑓 𝑚 𝑛 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-igsum 12961 . 2 Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ (℩𝑥((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))))
2 unab 3431 . . . 4 ({𝑥 ∣ (dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤))} ∪ {𝑥 ∣ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))}) = {𝑥 ∣ ((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))}
3 df-sn 3629 . . . . . . 7 {(0g𝑤)} = {𝑥𝑥 = (0g𝑤)}
4 fn0g 13077 . . . . . . . . 9 0g Fn V
5 vex 2766 . . . . . . . . 9 𝑤 ∈ V
6 funfvex 5578 . . . . . . . . . 10 ((Fun 0g𝑤 ∈ dom 0g) → (0g𝑤) ∈ V)
76funfni 5361 . . . . . . . . 9 ((0g Fn V ∧ 𝑤 ∈ V) → (0g𝑤) ∈ V)
84, 5, 7mp2an 426 . . . . . . . 8 (0g𝑤) ∈ V
98snex 4219 . . . . . . 7 {(0g𝑤)} ∈ V
103, 9eqeltrri 2270 . . . . . 6 {𝑥𝑥 = (0g𝑤)} ∈ V
11 simpr 110 . . . . . . 7 ((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) → 𝑥 = (0g𝑤))
1211ss2abi 3256 . . . . . 6 {𝑥 ∣ (dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤))} ⊆ {𝑥𝑥 = (0g𝑤)}
1310, 12ssexi 4172 . . . . 5 {𝑥 ∣ (dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤))} ∈ V
14 zex 9352 . . . . . . 7 ℤ ∈ V
1514, 14ab2rexex 6197 . . . . . 6 {𝑥 ∣ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)} ∈ V
16 df-rex 2481 . . . . . . . . . . . 12 (∃𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) ↔ ∃𝑛(𝑛 ∈ (ℤ𝑚) ∧ (dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))))
17 eluzel2 9623 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ𝑚) → 𝑚 ∈ ℤ)
18 eluzelz 9627 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ𝑚) → 𝑛 ∈ ℤ)
1917, 18jca 306 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ𝑚) → (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ))
20 simpr 110 . . . . . . . . . . . . . . 15 ((dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) → 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))
2119, 20anim12i 338 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ𝑚) ∧ (dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))) → ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))
22 anass 401 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) ↔ (𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))))
2321, 22sylib 122 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ𝑚) ∧ (dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))) → (𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))))
2423eximi 1614 . . . . . . . . . . . 12 (∃𝑛(𝑛 ∈ (ℤ𝑚) ∧ (dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))) → ∃𝑛(𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))))
2516, 24sylbi 121 . . . . . . . . . . 11 (∃𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) → ∃𝑛(𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))))
26 19.42v 1921 . . . . . . . . . . 11 (∃𝑛(𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))) ↔ (𝑚 ∈ ℤ ∧ ∃𝑛(𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))))
2725, 26sylib 122 . . . . . . . . . 10 (∃𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) → (𝑚 ∈ ℤ ∧ ∃𝑛(𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))))
28 df-rex 2481 . . . . . . . . . . 11 (∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛) ↔ ∃𝑛(𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))
2928anbi2i 457 . . . . . . . . . 10 ((𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) ↔ (𝑚 ∈ ℤ ∧ ∃𝑛(𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))))
3027, 29sylibr 134 . . . . . . . . 9 (∃𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) → (𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))
3130eximi 1614 . . . . . . . 8 (∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) → ∃𝑚(𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))
32 df-rex 2481 . . . . . . . 8 (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛) ↔ ∃𝑚(𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))
3331, 32sylibr 134 . . . . . . 7 (∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)) → ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))
3433ss2abi 3256 . . . . . 6 {𝑥 ∣ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))} ⊆ {𝑥 ∣ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)}
3515, 34ssexi 4172 . . . . 5 {𝑥 ∣ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))} ∈ V
3613, 35unex 4477 . . . 4 ({𝑥 ∣ (dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤))} ∪ {𝑥 ∣ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))}) ∈ V
372, 36eqeltrri 2270 . . 3 {𝑥 ∣ ((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))} ∈ V
38 iotaexab 5238 . . 3 ({𝑥 ∣ ((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))} ∈ V → (℩𝑥((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))) ∈ V)
3937, 38ax-mp 5 . 2 (℩𝑥((dom 𝑓 = ∅ ∧ 𝑥 = (0g𝑤)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛)))) ∈ V
401, 39fnmpoi 6270 1 Σg Fn (V × V)
Colors of variables: wff set class
Syntax hints:  wa 104  wo 709   = wceq 1364  wex 1506  wcel 2167  {cab 2182  wrex 2476  Vcvv 2763  cun 3155  c0 3451  {csn 3623   × cxp 4662  dom cdm 4664  cio 5218   Fn wfn 5254  cfv 5259  (class class class)co 5925  cz 9343  cuz 9618  ...cfz 10100  seqcseq 10556  +gcplusg 12780  0gc0g 12958   Σg cgsu 12959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-neg 8217  df-inn 9008  df-z 9344  df-uz 9619  df-ndx 12706  df-slot 12707  df-base 12709  df-0g 12960  df-igsum 12961
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator