| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-igsum 12930 | 
. 2
⊢ 
Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ (℩𝑥((dom 𝑓 = ∅ ∧ 𝑥 = (0g‘𝑤)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))))) | 
| 2 |   | unab 3430 | 
. . . 4
⊢ ({𝑥 ∣ (dom 𝑓 = ∅ ∧ 𝑥 = (0g‘𝑤))} ∪ {𝑥 ∣ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))}) = {𝑥 ∣ ((dom 𝑓 = ∅ ∧ 𝑥 = (0g‘𝑤)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)))} | 
| 3 |   | df-sn 3628 | 
. . . . . . 7
⊢
{(0g‘𝑤)} = {𝑥 ∣ 𝑥 = (0g‘𝑤)} | 
| 4 |   | fn0g 13018 | 
. . . . . . . . 9
⊢
0g Fn V | 
| 5 |   | vex 2766 | 
. . . . . . . . 9
⊢ 𝑤 ∈ V | 
| 6 |   | funfvex 5575 | 
. . . . . . . . . 10
⊢ ((Fun
0g ∧ 𝑤
∈ dom 0g) → (0g‘𝑤) ∈ V) | 
| 7 | 6 | funfni 5358 | 
. . . . . . . . 9
⊢
((0g Fn V ∧ 𝑤 ∈ V) → (0g‘𝑤) ∈ V) | 
| 8 | 4, 5, 7 | mp2an 426 | 
. . . . . . . 8
⊢
(0g‘𝑤) ∈ V | 
| 9 | 8 | snex 4218 | 
. . . . . . 7
⊢
{(0g‘𝑤)} ∈ V | 
| 10 | 3, 9 | eqeltrri 2270 | 
. . . . . 6
⊢ {𝑥 ∣ 𝑥 = (0g‘𝑤)} ∈ V | 
| 11 |   | simpr 110 | 
. . . . . . 7
⊢ ((dom
𝑓 = ∅ ∧ 𝑥 = (0g‘𝑤)) → 𝑥 = (0g‘𝑤)) | 
| 12 | 11 | ss2abi 3255 | 
. . . . . 6
⊢ {𝑥 ∣ (dom 𝑓 = ∅ ∧ 𝑥 = (0g‘𝑤))} ⊆ {𝑥 ∣ 𝑥 = (0g‘𝑤)} | 
| 13 | 10, 12 | ssexi 4171 | 
. . . . 5
⊢ {𝑥 ∣ (dom 𝑓 = ∅ ∧ 𝑥 = (0g‘𝑤))} ∈ V | 
| 14 |   | zex 9335 | 
. . . . . . 7
⊢ ℤ
∈ V | 
| 15 | 14, 14 | ab2rexex 6188 | 
. . . . . 6
⊢ {𝑥 ∣ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)} ∈ V | 
| 16 |   | df-rex 2481 | 
. . . . . . . . . . . 12
⊢
(∃𝑛 ∈
(ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)) ↔ ∃𝑛(𝑛 ∈ (ℤ≥‘𝑚) ∧ (dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)))) | 
| 17 |   | eluzel2 9606 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈
(ℤ≥‘𝑚) → 𝑚 ∈ ℤ) | 
| 18 |   | eluzelz 9610 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈
(ℤ≥‘𝑚) → 𝑛 ∈ ℤ) | 
| 19 | 17, 18 | jca 306 | 
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈
(ℤ≥‘𝑚) → (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) | 
| 20 |   | simpr 110 | 
. . . . . . . . . . . . . . 15
⊢ ((dom
𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)) → 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)) | 
| 21 | 19, 20 | anim12i 338 | 
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈
(ℤ≥‘𝑚) ∧ (dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))) → ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))) | 
| 22 |   | anass 401 | 
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)) ↔ (𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)))) | 
| 23 | 21, 22 | sylib 122 | 
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈
(ℤ≥‘𝑚) ∧ (dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))) → (𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)))) | 
| 24 | 23 | eximi 1614 | 
. . . . . . . . . . . 12
⊢
(∃𝑛(𝑛 ∈
(ℤ≥‘𝑚) ∧ (dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))) → ∃𝑛(𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)))) | 
| 25 | 16, 24 | sylbi 121 | 
. . . . . . . . . . 11
⊢
(∃𝑛 ∈
(ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)) → ∃𝑛(𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)))) | 
| 26 |   | 19.42v 1921 | 
. . . . . . . . . . 11
⊢
(∃𝑛(𝑚 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))) ↔ (𝑚 ∈ ℤ ∧ ∃𝑛(𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)))) | 
| 27 | 25, 26 | sylib 122 | 
. . . . . . . . . 10
⊢
(∃𝑛 ∈
(ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)) → (𝑚 ∈ ℤ ∧ ∃𝑛(𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)))) | 
| 28 |   | df-rex 2481 | 
. . . . . . . . . . 11
⊢
(∃𝑛 ∈
ℤ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛) ↔ ∃𝑛(𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))) | 
| 29 | 28 | anbi2i 457 | 
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℤ ∧
∃𝑛 ∈ ℤ
𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)) ↔ (𝑚 ∈ ℤ ∧ ∃𝑛(𝑛 ∈ ℤ ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)))) | 
| 30 | 27, 29 | sylibr 134 | 
. . . . . . . . 9
⊢
(∃𝑛 ∈
(ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)) → (𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))) | 
| 31 | 30 | eximi 1614 | 
. . . . . . . 8
⊢
(∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)) → ∃𝑚(𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))) | 
| 32 |   | df-rex 2481 | 
. . . . . . . 8
⊢
(∃𝑚 ∈
ℤ ∃𝑛 ∈
ℤ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛) ↔ ∃𝑚(𝑚 ∈ ℤ ∧ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))) | 
| 33 | 31, 32 | sylibr 134 | 
. . . . . . 7
⊢
(∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)) → ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)) | 
| 34 | 33 | ss2abi 3255 | 
. . . . . 6
⊢ {𝑥 ∣ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))} ⊆ {𝑥 ∣ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)} | 
| 35 | 15, 34 | ssexi 4171 | 
. . . . 5
⊢ {𝑥 ∣ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))} ∈ V | 
| 36 | 13, 35 | unex 4476 | 
. . . 4
⊢ ({𝑥 ∣ (dom 𝑓 = ∅ ∧ 𝑥 = (0g‘𝑤))} ∪ {𝑥 ∣ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))}) ∈ V | 
| 37 | 2, 36 | eqeltrri 2270 | 
. . 3
⊢ {𝑥 ∣ ((dom 𝑓 = ∅ ∧ 𝑥 = (0g‘𝑤)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)))} ∈ V | 
| 38 |   | iotaexab 5237 | 
. . 3
⊢ ({𝑥 ∣ ((dom 𝑓 = ∅ ∧ 𝑥 = (0g‘𝑤)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)))} ∈ V → (℩𝑥((dom 𝑓 = ∅ ∧ 𝑥 = (0g‘𝑤)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)))) ∈ V) | 
| 39 | 37, 38 | ax-mp 5 | 
. 2
⊢
(℩𝑥((dom 𝑓 = ∅ ∧ 𝑥 = (0g‘𝑤)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛)))) ∈ V | 
| 40 | 1, 39 | fnmpoi 6261 | 
1
⊢ 
Σg Fn (V × V) |