Detailed syntax breakdown of Definition df-iltp
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cltp 7362 | 
. 2
class
<P | 
| 2 |   | vx | 
. . . . . . 7
setvar 𝑥 | 
| 3 | 2 | cv 1363 | 
. . . . . 6
class 𝑥 | 
| 4 |   | cnp 7358 | 
. . . . . 6
class
P | 
| 5 | 3, 4 | wcel 2167 | 
. . . . 5
wff 𝑥 ∈
P | 
| 6 |   | vy | 
. . . . . . 7
setvar 𝑦 | 
| 7 | 6 | cv 1363 | 
. . . . . 6
class 𝑦 | 
| 8 | 7, 4 | wcel 2167 | 
. . . . 5
wff 𝑦 ∈
P | 
| 9 | 5, 8 | wa 104 | 
. . . 4
wff (𝑥 ∈ P ∧
𝑦 ∈
P) | 
| 10 |   | vq | 
. . . . . . . 8
setvar 𝑞 | 
| 11 | 10 | cv 1363 | 
. . . . . . 7
class 𝑞 | 
| 12 |   | c2nd 6197 | 
. . . . . . . 8
class
2nd | 
| 13 | 3, 12 | cfv 5258 | 
. . . . . . 7
class
(2nd ‘𝑥) | 
| 14 | 11, 13 | wcel 2167 | 
. . . . . 6
wff 𝑞 ∈ (2nd
‘𝑥) | 
| 15 |   | c1st 6196 | 
. . . . . . . 8
class
1st | 
| 16 | 7, 15 | cfv 5258 | 
. . . . . . 7
class
(1st ‘𝑦) | 
| 17 | 11, 16 | wcel 2167 | 
. . . . . 6
wff 𝑞 ∈ (1st
‘𝑦) | 
| 18 | 14, 17 | wa 104 | 
. . . . 5
wff (𝑞 ∈ (2nd
‘𝑥) ∧ 𝑞 ∈ (1st
‘𝑦)) | 
| 19 |   | cnq 7347 | 
. . . . 5
class
Q | 
| 20 | 18, 10, 19 | wrex 2476 | 
. . . 4
wff
∃𝑞 ∈
Q (𝑞 ∈
(2nd ‘𝑥)
∧ 𝑞 ∈
(1st ‘𝑦)) | 
| 21 | 9, 20 | wa 104 | 
. . 3
wff ((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ ∃𝑞 ∈
Q (𝑞 ∈
(2nd ‘𝑥)
∧ 𝑞 ∈
(1st ‘𝑦))) | 
| 22 | 21, 2, 6 | copab 4093 | 
. 2
class
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧
𝑦 ∈ P)
∧ ∃𝑞 ∈
Q (𝑞 ∈
(2nd ‘𝑥)
∧ 𝑞 ∈
(1st ‘𝑦)))} | 
| 23 | 1, 22 | wceq 1364 | 
1
wff
<P = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧
∃𝑞 ∈
Q (𝑞 ∈
(2nd ‘𝑥)
∧ 𝑞 ∈
(1st ‘𝑦)))} |