ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  npsspw GIF version

Theorem npsspw 7484
Description: Lemma for proving existence of reals. (Contributed by Jim Kingdon, 27-Sep-2019.)
Assertion
Ref Expression
npsspw P ⊆ (𝒫 Q × 𝒫 Q)

Proof of Theorem npsspw
Dummy variables 𝑢 𝑙 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . 4 ((((𝑙Q𝑢Q) ∧ (∃𝑞Q 𝑞𝑙 ∧ ∃𝑟Q 𝑟𝑢)) ∧ ((∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝑙𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢)))) → (𝑙Q𝑢Q))
2 velpw 3594 . . . . 5 (𝑙 ∈ 𝒫 Q𝑙Q)
3 velpw 3594 . . . . 5 (𝑢 ∈ 𝒫 Q𝑢Q)
42, 3anbi12i 460 . . . 4 ((𝑙 ∈ 𝒫 Q𝑢 ∈ 𝒫 Q) ↔ (𝑙Q𝑢Q))
51, 4sylibr 134 . . 3 ((((𝑙Q𝑢Q) ∧ (∃𝑞Q 𝑞𝑙 ∧ ∃𝑟Q 𝑟𝑢)) ∧ ((∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝑙𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢)))) → (𝑙 ∈ 𝒫 Q𝑢 ∈ 𝒫 Q))
65ssopab2i 4289 . 2 {⟨𝑙, 𝑢⟩ ∣ (((𝑙Q𝑢Q) ∧ (∃𝑞Q 𝑞𝑙 ∧ ∃𝑟Q 𝑟𝑢)) ∧ ((∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝑙𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢))))} ⊆ {⟨𝑙, 𝑢⟩ ∣ (𝑙 ∈ 𝒫 Q𝑢 ∈ 𝒫 Q)}
7 df-inp 7479 . 2 P = {⟨𝑙, 𝑢⟩ ∣ (((𝑙Q𝑢Q) ∧ (∃𝑞Q 𝑞𝑙 ∧ ∃𝑟Q 𝑟𝑢)) ∧ ((∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝑙𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢))))}
8 df-xp 4644 . 2 (𝒫 Q × 𝒫 Q) = {⟨𝑙, 𝑢⟩ ∣ (𝑙 ∈ 𝒫 Q𝑢 ∈ 𝒫 Q)}
96, 7, 83sstr4i 3208 1 P ⊆ (𝒫 Q × 𝒫 Q)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 979  wcel 2158  wral 2465  wrex 2466  wss 3141  𝒫 cpw 3587   class class class wbr 4015  {copab 4075   × cxp 4636  Qcnq 7293   <Q cltq 7298  Pcnp 7304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-in 3147  df-ss 3154  df-pw 3589  df-opab 4077  df-xp 4644  df-inp 7479
This theorem is referenced by:  preqlu  7485  npex  7486  elinp  7487  prop  7488  elnp1st2nd  7489  cauappcvgprlemladd  7671
  Copyright terms: Public domain W3C validator