ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  npsspw GIF version

Theorem npsspw 7566
Description: Lemma for proving existence of reals. (Contributed by Jim Kingdon, 27-Sep-2019.)
Assertion
Ref Expression
npsspw P ⊆ (𝒫 Q × 𝒫 Q)

Proof of Theorem npsspw
Dummy variables 𝑢 𝑙 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . 4 ((((𝑙Q𝑢Q) ∧ (∃𝑞Q 𝑞𝑙 ∧ ∃𝑟Q 𝑟𝑢)) ∧ ((∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝑙𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢)))) → (𝑙Q𝑢Q))
2 velpw 3622 . . . . 5 (𝑙 ∈ 𝒫 Q𝑙Q)
3 velpw 3622 . . . . 5 (𝑢 ∈ 𝒫 Q𝑢Q)
42, 3anbi12i 460 . . . 4 ((𝑙 ∈ 𝒫 Q𝑢 ∈ 𝒫 Q) ↔ (𝑙Q𝑢Q))
51, 4sylibr 134 . . 3 ((((𝑙Q𝑢Q) ∧ (∃𝑞Q 𝑞𝑙 ∧ ∃𝑟Q 𝑟𝑢)) ∧ ((∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝑙𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢)))) → (𝑙 ∈ 𝒫 Q𝑢 ∈ 𝒫 Q))
65ssopab2i 4322 . 2 {⟨𝑙, 𝑢⟩ ∣ (((𝑙Q𝑢Q) ∧ (∃𝑞Q 𝑞𝑙 ∧ ∃𝑟Q 𝑟𝑢)) ∧ ((∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝑙𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢))))} ⊆ {⟨𝑙, 𝑢⟩ ∣ (𝑙 ∈ 𝒫 Q𝑢 ∈ 𝒫 Q)}
7 df-inp 7561 . 2 P = {⟨𝑙, 𝑢⟩ ∣ (((𝑙Q𝑢Q) ∧ (∃𝑞Q 𝑞𝑙 ∧ ∃𝑟Q 𝑟𝑢)) ∧ ((∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝑙𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢))))}
8 df-xp 4679 . 2 (𝒫 Q × 𝒫 Q) = {⟨𝑙, 𝑢⟩ ∣ (𝑙 ∈ 𝒫 Q𝑢 ∈ 𝒫 Q)}
96, 7, 83sstr4i 3233 1 P ⊆ (𝒫 Q × 𝒫 Q)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980  wcel 2175  wral 2483  wrex 2484  wss 3165  𝒫 cpw 3615   class class class wbr 4043  {copab 4103   × cxp 4671  Qcnq 7375   <Q cltq 7380  Pcnp 7386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-in 3171  df-ss 3178  df-pw 3617  df-opab 4105  df-xp 4679  df-inp 7561
This theorem is referenced by:  preqlu  7567  npex  7568  elinp  7569  prop  7570  elnp1st2nd  7571  cauappcvgprlemladd  7753
  Copyright terms: Public domain W3C validator