ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  npsspw GIF version

Theorem npsspw 7412
Description: Lemma for proving existence of reals. (Contributed by Jim Kingdon, 27-Sep-2019.)
Assertion
Ref Expression
npsspw P ⊆ (𝒫 Q × 𝒫 Q)

Proof of Theorem npsspw
Dummy variables 𝑢 𝑙 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 519 . . . 4 ((((𝑙Q𝑢Q) ∧ (∃𝑞Q 𝑞𝑙 ∧ ∃𝑟Q 𝑟𝑢)) ∧ ((∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝑙𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢)))) → (𝑙Q𝑢Q))
2 velpw 3566 . . . . 5 (𝑙 ∈ 𝒫 Q𝑙Q)
3 velpw 3566 . . . . 5 (𝑢 ∈ 𝒫 Q𝑢Q)
42, 3anbi12i 456 . . . 4 ((𝑙 ∈ 𝒫 Q𝑢 ∈ 𝒫 Q) ↔ (𝑙Q𝑢Q))
51, 4sylibr 133 . . 3 ((((𝑙Q𝑢Q) ∧ (∃𝑞Q 𝑞𝑙 ∧ ∃𝑟Q 𝑟𝑢)) ∧ ((∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝑙𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢)))) → (𝑙 ∈ 𝒫 Q𝑢 ∈ 𝒫 Q))
65ssopab2i 4255 . 2 {⟨𝑙, 𝑢⟩ ∣ (((𝑙Q𝑢Q) ∧ (∃𝑞Q 𝑞𝑙 ∧ ∃𝑟Q 𝑟𝑢)) ∧ ((∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝑙𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢))))} ⊆ {⟨𝑙, 𝑢⟩ ∣ (𝑙 ∈ 𝒫 Q𝑢 ∈ 𝒫 Q)}
7 df-inp 7407 . 2 P = {⟨𝑙, 𝑢⟩ ∣ (((𝑙Q𝑢Q) ∧ (∃𝑞Q 𝑞𝑙 ∧ ∃𝑟Q 𝑟𝑢)) ∧ ((∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝑙𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢))))}
8 df-xp 4610 . 2 (𝒫 Q × 𝒫 Q) = {⟨𝑙, 𝑢⟩ ∣ (𝑙 ∈ 𝒫 Q𝑢 ∈ 𝒫 Q)}
96, 7, 83sstr4i 3183 1 P ⊆ (𝒫 Q × 𝒫 Q)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  w3a 968  wcel 2136  wral 2444  wrex 2445  wss 3116  𝒫 cpw 3559   class class class wbr 3982  {copab 4042   × cxp 4602  Qcnq 7221   <Q cltq 7226  Pcnp 7232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561  df-opab 4044  df-xp 4610  df-inp 7407
This theorem is referenced by:  preqlu  7413  npex  7414  elinp  7415  prop  7416  elnp1st2nd  7417  cauappcvgprlemladd  7599
  Copyright terms: Public domain W3C validator