ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  npsspw GIF version

Theorem npsspw 7279
Description: Lemma for proving existence of reals. (Contributed by Jim Kingdon, 27-Sep-2019.)
Assertion
Ref Expression
npsspw P ⊆ (𝒫 Q × 𝒫 Q)

Proof of Theorem npsspw
Dummy variables 𝑢 𝑙 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 518 . . . 4 ((((𝑙Q𝑢Q) ∧ (∃𝑞Q 𝑞𝑙 ∧ ∃𝑟Q 𝑟𝑢)) ∧ ((∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝑙𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢)))) → (𝑙Q𝑢Q))
2 velpw 3517 . . . . 5 (𝑙 ∈ 𝒫 Q𝑙Q)
3 velpw 3517 . . . . 5 (𝑢 ∈ 𝒫 Q𝑢Q)
42, 3anbi12i 455 . . . 4 ((𝑙 ∈ 𝒫 Q𝑢 ∈ 𝒫 Q) ↔ (𝑙Q𝑢Q))
51, 4sylibr 133 . . 3 ((((𝑙Q𝑢Q) ∧ (∃𝑞Q 𝑞𝑙 ∧ ∃𝑟Q 𝑟𝑢)) ∧ ((∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝑙𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢)))) → (𝑙 ∈ 𝒫 Q𝑢 ∈ 𝒫 Q))
65ssopab2i 4199 . 2 {⟨𝑙, 𝑢⟩ ∣ (((𝑙Q𝑢Q) ∧ (∃𝑞Q 𝑞𝑙 ∧ ∃𝑟Q 𝑟𝑢)) ∧ ((∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝑙𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢))))} ⊆ {⟨𝑙, 𝑢⟩ ∣ (𝑙 ∈ 𝒫 Q𝑢 ∈ 𝒫 Q)}
7 df-inp 7274 . 2 P = {⟨𝑙, 𝑢⟩ ∣ (((𝑙Q𝑢Q) ∧ (∃𝑞Q 𝑞𝑙 ∧ ∃𝑟Q 𝑟𝑢)) ∧ ((∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝑙𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢))))}
8 df-xp 4545 . 2 (𝒫 Q × 𝒫 Q) = {⟨𝑙, 𝑢⟩ ∣ (𝑙 ∈ 𝒫 Q𝑢 ∈ 𝒫 Q)}
96, 7, 83sstr4i 3138 1 P ⊆ (𝒫 Q × 𝒫 Q)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  w3a 962  wcel 1480  wral 2416  wrex 2417  wss 3071  𝒫 cpw 3510   class class class wbr 3929  {copab 3988   × cxp 4537  Qcnq 7088   <Q cltq 7093  Pcnp 7099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-in 3077  df-ss 3084  df-pw 3512  df-opab 3990  df-xp 4545  df-inp 7274
This theorem is referenced by:  preqlu  7280  npex  7281  elinp  7282  prop  7283  elnp1st2nd  7284  cauappcvgprlemladd  7466
  Copyright terms: Public domain W3C validator