ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-imp GIF version

Definition df-imp 7553
Description: Define multiplication on positive reals. Here we use a simple definition which is similar to df-iplp 7552 or the definition of multiplication on positive reals in Metamath Proof Explorer. This is as opposed to the more complicated definition of multiplication given in Section 11.2.1 of [HoTT], p. (varies), which appears to be motivated by handling negative numbers or handling modified Dedekind cuts in which locatedness is omitted.

This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 29-Sep-2019.)

Assertion
Ref Expression
df-imp ·P = (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}⟩)
Distinct variable group:   𝑥,𝑦,𝑞,𝑟,𝑠

Detailed syntax breakdown of Definition df-imp
StepHypRef Expression
1 cmp 7378 . 2 class ·P
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cnp 7375 . . 3 class P
5 vr . . . . . . . . . 10 setvar 𝑟
65cv 1363 . . . . . . . . 9 class 𝑟
72cv 1363 . . . . . . . . . 10 class 𝑥
8 c1st 6205 . . . . . . . . . 10 class 1st
97, 8cfv 5259 . . . . . . . . 9 class (1st𝑥)
106, 9wcel 2167 . . . . . . . 8 wff 𝑟 ∈ (1st𝑥)
11 vs . . . . . . . . . 10 setvar 𝑠
1211cv 1363 . . . . . . . . 9 class 𝑠
133cv 1363 . . . . . . . . . 10 class 𝑦
1413, 8cfv 5259 . . . . . . . . 9 class (1st𝑦)
1512, 14wcel 2167 . . . . . . . 8 wff 𝑠 ∈ (1st𝑦)
16 vq . . . . . . . . . 10 setvar 𝑞
1716cv 1363 . . . . . . . . 9 class 𝑞
18 cmq 7367 . . . . . . . . . 10 class ·Q
196, 12, 18co 5925 . . . . . . . . 9 class (𝑟 ·Q 𝑠)
2017, 19wceq 1364 . . . . . . . 8 wff 𝑞 = (𝑟 ·Q 𝑠)
2110, 15, 20w3a 980 . . . . . . 7 wff (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))
22 cnq 7364 . . . . . . 7 class Q
2321, 11, 22wrex 2476 . . . . . 6 wff 𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))
2423, 5, 22wrex 2476 . . . . 5 wff 𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))
2524, 16, 22crab 2479 . . . 4 class {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}
26 c2nd 6206 . . . . . . . . . 10 class 2nd
277, 26cfv 5259 . . . . . . . . 9 class (2nd𝑥)
286, 27wcel 2167 . . . . . . . 8 wff 𝑟 ∈ (2nd𝑥)
2913, 26cfv 5259 . . . . . . . . 9 class (2nd𝑦)
3012, 29wcel 2167 . . . . . . . 8 wff 𝑠 ∈ (2nd𝑦)
3128, 30, 20w3a 980 . . . . . . 7 wff (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))
3231, 11, 22wrex 2476 . . . . . 6 wff 𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))
3332, 5, 22wrex 2476 . . . . 5 wff 𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))
3433, 16, 22crab 2479 . . . 4 class {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}
3525, 34cop 3626 . . 3 class ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}⟩
362, 3, 4, 4, 35cmpo 5927 . 2 class (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}⟩)
371, 36wceq 1364 1 wff ·P = (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}⟩)
Colors of variables: wff set class
This definition is referenced by:  mpvlu  7623  dmmp  7625  mulnqprl  7652  mulnqpru  7653  mulclpr  7656  mulnqprlemrl  7657  mulnqprlemru  7658  mulassprg  7665  distrlem1prl  7666  distrlem1pru  7667  distrlem4prl  7668  distrlem4pru  7669  distrlem5prl  7670  distrlem5pru  7671  1idprl  7674  1idpru  7675  recexprlem1ssl  7717  recexprlem1ssu  7718  recexprlemss1l  7719  recexprlemss1u  7720
  Copyright terms: Public domain W3C validator