ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-imp GIF version

Definition df-imp 7624
Description: Define multiplication on positive reals. Here we use a simple definition which is similar to df-iplp 7623 or the definition of multiplication on positive reals in Metamath Proof Explorer. This is as opposed to the more complicated definition of multiplication given in Section 11.2.1 of [HoTT], p. (varies), which appears to be motivated by handling negative numbers or handling modified Dedekind cuts in which locatedness is omitted.

This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 29-Sep-2019.)

Assertion
Ref Expression
df-imp ·P = (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}⟩)
Distinct variable group:   𝑥,𝑦,𝑞,𝑟,𝑠

Detailed syntax breakdown of Definition df-imp
StepHypRef Expression
1 cmp 7449 . 2 class ·P
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cnp 7446 . . 3 class P
5 vr . . . . . . . . . 10 setvar 𝑟
65cv 1374 . . . . . . . . 9 class 𝑟
72cv 1374 . . . . . . . . . 10 class 𝑥
8 c1st 6254 . . . . . . . . . 10 class 1st
97, 8cfv 5294 . . . . . . . . 9 class (1st𝑥)
106, 9wcel 2180 . . . . . . . 8 wff 𝑟 ∈ (1st𝑥)
11 vs . . . . . . . . . 10 setvar 𝑠
1211cv 1374 . . . . . . . . 9 class 𝑠
133cv 1374 . . . . . . . . . 10 class 𝑦
1413, 8cfv 5294 . . . . . . . . 9 class (1st𝑦)
1512, 14wcel 2180 . . . . . . . 8 wff 𝑠 ∈ (1st𝑦)
16 vq . . . . . . . . . 10 setvar 𝑞
1716cv 1374 . . . . . . . . 9 class 𝑞
18 cmq 7438 . . . . . . . . . 10 class ·Q
196, 12, 18co 5974 . . . . . . . . 9 class (𝑟 ·Q 𝑠)
2017, 19wceq 1375 . . . . . . . 8 wff 𝑞 = (𝑟 ·Q 𝑠)
2110, 15, 20w3a 983 . . . . . . 7 wff (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))
22 cnq 7435 . . . . . . 7 class Q
2321, 11, 22wrex 2489 . . . . . 6 wff 𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))
2423, 5, 22wrex 2489 . . . . 5 wff 𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))
2524, 16, 22crab 2492 . . . 4 class {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}
26 c2nd 6255 . . . . . . . . . 10 class 2nd
277, 26cfv 5294 . . . . . . . . 9 class (2nd𝑥)
286, 27wcel 2180 . . . . . . . 8 wff 𝑟 ∈ (2nd𝑥)
2913, 26cfv 5294 . . . . . . . . 9 class (2nd𝑦)
3012, 29wcel 2180 . . . . . . . 8 wff 𝑠 ∈ (2nd𝑦)
3128, 30, 20w3a 983 . . . . . . 7 wff (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))
3231, 11, 22wrex 2489 . . . . . 6 wff 𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))
3332, 5, 22wrex 2489 . . . . 5 wff 𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))
3433, 16, 22crab 2492 . . . 4 class {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}
3525, 34cop 3649 . . 3 class ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}⟩
362, 3, 4, 4, 35cmpo 5976 . 2 class (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}⟩)
371, 36wceq 1375 1 wff ·P = (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}⟩)
Colors of variables: wff set class
This definition is referenced by:  mpvlu  7694  dmmp  7696  mulnqprl  7723  mulnqpru  7724  mulclpr  7727  mulnqprlemrl  7728  mulnqprlemru  7729  mulassprg  7736  distrlem1prl  7737  distrlem1pru  7738  distrlem4prl  7739  distrlem4pru  7740  distrlem5prl  7741  distrlem5pru  7742  1idprl  7745  1idpru  7746  recexprlem1ssl  7788  recexprlem1ssu  7789  recexprlemss1l  7790  recexprlemss1u  7791
  Copyright terms: Public domain W3C validator