ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-imp GIF version

Definition df-imp 7431
Description: Define multiplication on positive reals. Here we use a simple definition which is similar to df-iplp 7430 or the definition of multiplication on positive reals in Metamath Proof Explorer. This is as opposed to the more complicated definition of multiplication given in Section 11.2.1 of [HoTT], p. (varies), which appears to be motivated by handling negative numbers or handling modified Dedekind cuts in which locatedness is omitted.

This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 29-Sep-2019.)

Assertion
Ref Expression
df-imp ·P = (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}⟩)
Distinct variable group:   𝑥,𝑦,𝑞,𝑟,𝑠

Detailed syntax breakdown of Definition df-imp
StepHypRef Expression
1 cmp 7256 . 2 class ·P
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cnp 7253 . . 3 class P
5 vr . . . . . . . . . 10 setvar 𝑟
65cv 1347 . . . . . . . . 9 class 𝑟
72cv 1347 . . . . . . . . . 10 class 𝑥
8 c1st 6117 . . . . . . . . . 10 class 1st
97, 8cfv 5198 . . . . . . . . 9 class (1st𝑥)
106, 9wcel 2141 . . . . . . . 8 wff 𝑟 ∈ (1st𝑥)
11 vs . . . . . . . . . 10 setvar 𝑠
1211cv 1347 . . . . . . . . 9 class 𝑠
133cv 1347 . . . . . . . . . 10 class 𝑦
1413, 8cfv 5198 . . . . . . . . 9 class (1st𝑦)
1512, 14wcel 2141 . . . . . . . 8 wff 𝑠 ∈ (1st𝑦)
16 vq . . . . . . . . . 10 setvar 𝑞
1716cv 1347 . . . . . . . . 9 class 𝑞
18 cmq 7245 . . . . . . . . . 10 class ·Q
196, 12, 18co 5853 . . . . . . . . 9 class (𝑟 ·Q 𝑠)
2017, 19wceq 1348 . . . . . . . 8 wff 𝑞 = (𝑟 ·Q 𝑠)
2110, 15, 20w3a 973 . . . . . . 7 wff (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))
22 cnq 7242 . . . . . . 7 class Q
2321, 11, 22wrex 2449 . . . . . 6 wff 𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))
2423, 5, 22wrex 2449 . . . . 5 wff 𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))
2524, 16, 22crab 2452 . . . 4 class {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}
26 c2nd 6118 . . . . . . . . . 10 class 2nd
277, 26cfv 5198 . . . . . . . . 9 class (2nd𝑥)
286, 27wcel 2141 . . . . . . . 8 wff 𝑟 ∈ (2nd𝑥)
2913, 26cfv 5198 . . . . . . . . 9 class (2nd𝑦)
3012, 29wcel 2141 . . . . . . . 8 wff 𝑠 ∈ (2nd𝑦)
3128, 30, 20w3a 973 . . . . . . 7 wff (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))
3231, 11, 22wrex 2449 . . . . . 6 wff 𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))
3332, 5, 22wrex 2449 . . . . 5 wff 𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))
3433, 16, 22crab 2452 . . . 4 class {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}
3525, 34cop 3586 . . 3 class ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}⟩
362, 3, 4, 4, 35cmpo 5855 . 2 class (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}⟩)
371, 36wceq 1348 1 wff ·P = (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}⟩)
Colors of variables: wff set class
This definition is referenced by:  mpvlu  7501  dmmp  7503  mulnqprl  7530  mulnqpru  7531  mulclpr  7534  mulnqprlemrl  7535  mulnqprlemru  7536  mulassprg  7543  distrlem1prl  7544  distrlem1pru  7545  distrlem4prl  7546  distrlem4pru  7547  distrlem5prl  7548  distrlem5pru  7549  1idprl  7552  1idpru  7553  recexprlem1ssl  7595  recexprlem1ssu  7596  recexprlemss1l  7597  recexprlemss1u  7598
  Copyright terms: Public domain W3C validator