Detailed syntax breakdown of Definition df-imp
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cmp 7361 | 
. 2
class 
·P | 
| 2 |   | vx | 
. . 3
setvar 𝑥 | 
| 3 |   | vy | 
. . 3
setvar 𝑦 | 
| 4 |   | cnp 7358 | 
. . 3
class
P | 
| 5 |   | vr | 
. . . . . . . . . 10
setvar 𝑟 | 
| 6 | 5 | cv 1363 | 
. . . . . . . . 9
class 𝑟 | 
| 7 | 2 | cv 1363 | 
. . . . . . . . . 10
class 𝑥 | 
| 8 |   | c1st 6196 | 
. . . . . . . . . 10
class
1st | 
| 9 | 7, 8 | cfv 5258 | 
. . . . . . . . 9
class
(1st ‘𝑥) | 
| 10 | 6, 9 | wcel 2167 | 
. . . . . . . 8
wff 𝑟 ∈ (1st
‘𝑥) | 
| 11 |   | vs | 
. . . . . . . . . 10
setvar 𝑠 | 
| 12 | 11 | cv 1363 | 
. . . . . . . . 9
class 𝑠 | 
| 13 | 3 | cv 1363 | 
. . . . . . . . . 10
class 𝑦 | 
| 14 | 13, 8 | cfv 5258 | 
. . . . . . . . 9
class
(1st ‘𝑦) | 
| 15 | 12, 14 | wcel 2167 | 
. . . . . . . 8
wff 𝑠 ∈ (1st
‘𝑦) | 
| 16 |   | vq | 
. . . . . . . . . 10
setvar 𝑞 | 
| 17 | 16 | cv 1363 | 
. . . . . . . . 9
class 𝑞 | 
| 18 |   | cmq 7350 | 
. . . . . . . . . 10
class 
·Q | 
| 19 | 6, 12, 18 | co 5922 | 
. . . . . . . . 9
class (𝑟
·Q 𝑠) | 
| 20 | 17, 19 | wceq 1364 | 
. . . . . . . 8
wff 𝑞 = (𝑟 ·Q 𝑠) | 
| 21 | 10, 15, 20 | w3a 980 | 
. . . . . . 7
wff (𝑟 ∈ (1st
‘𝑥) ∧ 𝑠 ∈ (1st
‘𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠)) | 
| 22 |   | cnq 7347 | 
. . . . . . 7
class
Q | 
| 23 | 21, 11, 22 | wrex 2476 | 
. . . . . 6
wff
∃𝑠 ∈
Q (𝑟 ∈
(1st ‘𝑥)
∧ 𝑠 ∈
(1st ‘𝑦)
∧ 𝑞 = (𝑟
·Q 𝑠)) | 
| 24 | 23, 5, 22 | wrex 2476 | 
. . . . 5
wff
∃𝑟 ∈
Q ∃𝑠
∈ Q (𝑟
∈ (1st ‘𝑥) ∧ 𝑠 ∈ (1st ‘𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠)) | 
| 25 | 24, 16, 22 | crab 2479 | 
. . . 4
class {𝑞 ∈ Q ∣
∃𝑟 ∈
Q ∃𝑠
∈ Q (𝑟
∈ (1st ‘𝑥) ∧ 𝑠 ∈ (1st ‘𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))} | 
| 26 |   | c2nd 6197 | 
. . . . . . . . . 10
class
2nd | 
| 27 | 7, 26 | cfv 5258 | 
. . . . . . . . 9
class
(2nd ‘𝑥) | 
| 28 | 6, 27 | wcel 2167 | 
. . . . . . . 8
wff 𝑟 ∈ (2nd
‘𝑥) | 
| 29 | 13, 26 | cfv 5258 | 
. . . . . . . . 9
class
(2nd ‘𝑦) | 
| 30 | 12, 29 | wcel 2167 | 
. . . . . . . 8
wff 𝑠 ∈ (2nd
‘𝑦) | 
| 31 | 28, 30, 20 | w3a 980 | 
. . . . . . 7
wff (𝑟 ∈ (2nd
‘𝑥) ∧ 𝑠 ∈ (2nd
‘𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠)) | 
| 32 | 31, 11, 22 | wrex 2476 | 
. . . . . 6
wff
∃𝑠 ∈
Q (𝑟 ∈
(2nd ‘𝑥)
∧ 𝑠 ∈
(2nd ‘𝑦)
∧ 𝑞 = (𝑟
·Q 𝑠)) | 
| 33 | 32, 5, 22 | wrex 2476 | 
. . . . 5
wff
∃𝑟 ∈
Q ∃𝑠
∈ Q (𝑟
∈ (2nd ‘𝑥) ∧ 𝑠 ∈ (2nd ‘𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠)) | 
| 34 | 33, 16, 22 | crab 2479 | 
. . . 4
class {𝑞 ∈ Q ∣
∃𝑟 ∈
Q ∃𝑠
∈ Q (𝑟
∈ (2nd ‘𝑥) ∧ 𝑠 ∈ (2nd ‘𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))} | 
| 35 | 25, 34 | cop 3625 | 
. . 3
class
〈{𝑞 ∈
Q ∣ ∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ (1st
‘𝑥) ∧ 𝑠 ∈ (1st
‘𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}, {𝑞 ∈ Q ∣ ∃𝑟 ∈ Q
∃𝑠 ∈
Q (𝑟 ∈
(2nd ‘𝑥)
∧ 𝑠 ∈
(2nd ‘𝑦)
∧ 𝑞 = (𝑟
·Q 𝑠))}〉 | 
| 36 | 2, 3, 4, 4, 35 | cmpo 5924 | 
. 2
class (𝑥 ∈ P, 𝑦 ∈ P ↦
〈{𝑞 ∈
Q ∣ ∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ (1st
‘𝑥) ∧ 𝑠 ∈ (1st
‘𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}, {𝑞 ∈ Q ∣ ∃𝑟 ∈ Q
∃𝑠 ∈
Q (𝑟 ∈
(2nd ‘𝑥)
∧ 𝑠 ∈
(2nd ‘𝑦)
∧ 𝑞 = (𝑟
·Q 𝑠))}〉) | 
| 37 | 1, 36 | wceq 1364 | 
1
wff 
·P = (𝑥 ∈ P, 𝑦 ∈ P ↦ 〈{𝑞 ∈ Q ∣
∃𝑟 ∈
Q ∃𝑠
∈ Q (𝑟
∈ (1st ‘𝑥) ∧ 𝑠 ∈ (1st ‘𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}, {𝑞 ∈ Q ∣ ∃𝑟 ∈ Q
∃𝑠 ∈
Q (𝑟 ∈
(2nd ‘𝑥)
∧ 𝑠 ∈
(2nd ‘𝑦)
∧ 𝑞 = (𝑟
·Q 𝑠))}〉) |