ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-imp GIF version

Definition df-imp 7531
Description: Define multiplication on positive reals. Here we use a simple definition which is similar to df-iplp 7530 or the definition of multiplication on positive reals in Metamath Proof Explorer. This is as opposed to the more complicated definition of multiplication given in Section 11.2.1 of [HoTT], p. (varies), which appears to be motivated by handling negative numbers or handling modified Dedekind cuts in which locatedness is omitted.

This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 29-Sep-2019.)

Assertion
Ref Expression
df-imp ·P = (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}⟩)
Distinct variable group:   𝑥,𝑦,𝑞,𝑟,𝑠

Detailed syntax breakdown of Definition df-imp
StepHypRef Expression
1 cmp 7356 . 2 class ·P
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cnp 7353 . . 3 class P
5 vr . . . . . . . . . 10 setvar 𝑟
65cv 1363 . . . . . . . . 9 class 𝑟
72cv 1363 . . . . . . . . . 10 class 𝑥
8 c1st 6193 . . . . . . . . . 10 class 1st
97, 8cfv 5255 . . . . . . . . 9 class (1st𝑥)
106, 9wcel 2164 . . . . . . . 8 wff 𝑟 ∈ (1st𝑥)
11 vs . . . . . . . . . 10 setvar 𝑠
1211cv 1363 . . . . . . . . 9 class 𝑠
133cv 1363 . . . . . . . . . 10 class 𝑦
1413, 8cfv 5255 . . . . . . . . 9 class (1st𝑦)
1512, 14wcel 2164 . . . . . . . 8 wff 𝑠 ∈ (1st𝑦)
16 vq . . . . . . . . . 10 setvar 𝑞
1716cv 1363 . . . . . . . . 9 class 𝑞
18 cmq 7345 . . . . . . . . . 10 class ·Q
196, 12, 18co 5919 . . . . . . . . 9 class (𝑟 ·Q 𝑠)
2017, 19wceq 1364 . . . . . . . 8 wff 𝑞 = (𝑟 ·Q 𝑠)
2110, 15, 20w3a 980 . . . . . . 7 wff (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))
22 cnq 7342 . . . . . . 7 class Q
2321, 11, 22wrex 2473 . . . . . 6 wff 𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))
2423, 5, 22wrex 2473 . . . . 5 wff 𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))
2524, 16, 22crab 2476 . . . 4 class {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}
26 c2nd 6194 . . . . . . . . . 10 class 2nd
277, 26cfv 5255 . . . . . . . . 9 class (2nd𝑥)
286, 27wcel 2164 . . . . . . . 8 wff 𝑟 ∈ (2nd𝑥)
2913, 26cfv 5255 . . . . . . . . 9 class (2nd𝑦)
3012, 29wcel 2164 . . . . . . . 8 wff 𝑠 ∈ (2nd𝑦)
3128, 30, 20w3a 980 . . . . . . 7 wff (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))
3231, 11, 22wrex 2473 . . . . . 6 wff 𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))
3332, 5, 22wrex 2473 . . . . 5 wff 𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))
3433, 16, 22crab 2476 . . . 4 class {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}
3525, 34cop 3622 . . 3 class ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}⟩
362, 3, 4, 4, 35cmpo 5921 . 2 class (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}⟩)
371, 36wceq 1364 1 wff ·P = (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}⟩)
Colors of variables: wff set class
This definition is referenced by:  mpvlu  7601  dmmp  7603  mulnqprl  7630  mulnqpru  7631  mulclpr  7634  mulnqprlemrl  7635  mulnqprlemru  7636  mulassprg  7643  distrlem1prl  7644  distrlem1pru  7645  distrlem4prl  7646  distrlem4pru  7647  distrlem5prl  7648  distrlem5pru  7649  1idprl  7652  1idpru  7653  recexprlem1ssl  7695  recexprlem1ssu  7696  recexprlemss1l  7697  recexprlemss1u  7698
  Copyright terms: Public domain W3C validator