ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-imp GIF version

Definition df-imp 7555
Description: Define multiplication on positive reals. Here we use a simple definition which is similar to df-iplp 7554 or the definition of multiplication on positive reals in Metamath Proof Explorer. This is as opposed to the more complicated definition of multiplication given in Section 11.2.1 of [HoTT], p. (varies), which appears to be motivated by handling negative numbers or handling modified Dedekind cuts in which locatedness is omitted.

This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 29-Sep-2019.)

Assertion
Ref Expression
df-imp ·P = (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}⟩)
Distinct variable group:   𝑥,𝑦,𝑞,𝑟,𝑠

Detailed syntax breakdown of Definition df-imp
StepHypRef Expression
1 cmp 7380 . 2 class ·P
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cnp 7377 . . 3 class P
5 vr . . . . . . . . . 10 setvar 𝑟
65cv 1363 . . . . . . . . 9 class 𝑟
72cv 1363 . . . . . . . . . 10 class 𝑥
8 c1st 6205 . . . . . . . . . 10 class 1st
97, 8cfv 5259 . . . . . . . . 9 class (1st𝑥)
106, 9wcel 2167 . . . . . . . 8 wff 𝑟 ∈ (1st𝑥)
11 vs . . . . . . . . . 10 setvar 𝑠
1211cv 1363 . . . . . . . . 9 class 𝑠
133cv 1363 . . . . . . . . . 10 class 𝑦
1413, 8cfv 5259 . . . . . . . . 9 class (1st𝑦)
1512, 14wcel 2167 . . . . . . . 8 wff 𝑠 ∈ (1st𝑦)
16 vq . . . . . . . . . 10 setvar 𝑞
1716cv 1363 . . . . . . . . 9 class 𝑞
18 cmq 7369 . . . . . . . . . 10 class ·Q
196, 12, 18co 5925 . . . . . . . . 9 class (𝑟 ·Q 𝑠)
2017, 19wceq 1364 . . . . . . . 8 wff 𝑞 = (𝑟 ·Q 𝑠)
2110, 15, 20w3a 980 . . . . . . 7 wff (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))
22 cnq 7366 . . . . . . 7 class Q
2321, 11, 22wrex 2476 . . . . . 6 wff 𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))
2423, 5, 22wrex 2476 . . . . 5 wff 𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))
2524, 16, 22crab 2479 . . . 4 class {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}
26 c2nd 6206 . . . . . . . . . 10 class 2nd
277, 26cfv 5259 . . . . . . . . 9 class (2nd𝑥)
286, 27wcel 2167 . . . . . . . 8 wff 𝑟 ∈ (2nd𝑥)
2913, 26cfv 5259 . . . . . . . . 9 class (2nd𝑦)
3012, 29wcel 2167 . . . . . . . 8 wff 𝑠 ∈ (2nd𝑦)
3128, 30, 20w3a 980 . . . . . . 7 wff (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))
3231, 11, 22wrex 2476 . . . . . 6 wff 𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))
3332, 5, 22wrex 2476 . . . . 5 wff 𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))
3433, 16, 22crab 2479 . . . 4 class {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}
3525, 34cop 3626 . . 3 class ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}⟩
362, 3, 4, 4, 35cmpo 5927 . 2 class (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}⟩)
371, 36wceq 1364 1 wff ·P = (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}⟩)
Colors of variables: wff set class
This definition is referenced by:  mpvlu  7625  dmmp  7627  mulnqprl  7654  mulnqpru  7655  mulclpr  7658  mulnqprlemrl  7659  mulnqprlemru  7660  mulassprg  7667  distrlem1prl  7668  distrlem1pru  7669  distrlem4prl  7670  distrlem4pru  7671  distrlem5prl  7672  distrlem5pru  7673  1idprl  7676  1idpru  7677  recexprlem1ssl  7719  recexprlem1ssu  7720  recexprlemss1l  7721  recexprlemss1u  7722
  Copyright terms: Public domain W3C validator