ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrelpr GIF version

Theorem ltrelpr 7565
Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.)
Assertion
Ref Expression
ltrelpr <P ⊆ (P × P)

Proof of Theorem ltrelpr
Dummy variables 𝑥 𝑞 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iltp 7530 . 2 <P = {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)))}
2 opabssxp 4733 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)))} ⊆ (P × P)
31, 2eqsstri 3211 1 <P ⊆ (P × P)
Colors of variables: wff set class
Syntax hints:  wa 104  wcel 2164  wrex 2473  wss 3153  {copab 4089   × cxp 4657  cfv 5254  1st c1st 6191  2nd c2nd 6192  Qcnq 7340  Pcnp 7351  <P cltp 7355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-in 3159  df-ss 3166  df-opab 4091  df-xp 4665  df-iltp 7530
This theorem is referenced by:  ltprordil  7649  ltexprlemm  7660  ltexprlemopl  7661  ltexprlemlol  7662  ltexprlemopu  7663  ltexprlemupu  7664  ltexprlemdisj  7666  ltexprlemloc  7667  ltexprlemfl  7669  ltexprlemrl  7670  ltexprlemfu  7671  ltexprlemru  7672  ltexpri  7673  lteupri  7677  ltaprlem  7678  prplnqu  7680  caucvgprprlemk  7743  caucvgprprlemnkltj  7749  caucvgprprlemnkeqj  7750  caucvgprprlemnjltk  7751  caucvgprprlemnbj  7753  caucvgprprlemml  7754  caucvgprprlemlol  7758  caucvgprprlemupu  7760  suplocexprlemss  7775  suplocexprlemlub  7784  gt0srpr  7808  lttrsr  7822  ltposr  7823  archsr  7842
  Copyright terms: Public domain W3C validator