ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrelpr GIF version

Theorem ltrelpr 7567
Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.)
Assertion
Ref Expression
ltrelpr <P ⊆ (P × P)

Proof of Theorem ltrelpr
Dummy variables 𝑥 𝑞 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iltp 7532 . 2 <P = {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)))}
2 opabssxp 4734 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)))} ⊆ (P × P)
31, 2eqsstri 3212 1 <P ⊆ (P × P)
Colors of variables: wff set class
Syntax hints:  wa 104  wcel 2164  wrex 2473  wss 3154  {copab 4090   × cxp 4658  cfv 5255  1st c1st 6193  2nd c2nd 6194  Qcnq 7342  Pcnp 7353  <P cltp 7357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-in 3160  df-ss 3167  df-opab 4092  df-xp 4666  df-iltp 7532
This theorem is referenced by:  ltprordil  7651  ltexprlemm  7662  ltexprlemopl  7663  ltexprlemlol  7664  ltexprlemopu  7665  ltexprlemupu  7666  ltexprlemdisj  7668  ltexprlemloc  7669  ltexprlemfl  7671  ltexprlemrl  7672  ltexprlemfu  7673  ltexprlemru  7674  ltexpri  7675  lteupri  7679  ltaprlem  7680  prplnqu  7682  caucvgprprlemk  7745  caucvgprprlemnkltj  7751  caucvgprprlemnkeqj  7752  caucvgprprlemnjltk  7753  caucvgprprlemnbj  7755  caucvgprprlemml  7756  caucvgprprlemlol  7760  caucvgprprlemupu  7762  suplocexprlemss  7777  suplocexprlemlub  7786  gt0srpr  7810  lttrsr  7824  ltposr  7825  archsr  7844
  Copyright terms: Public domain W3C validator