![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltrelpr | GIF version |
Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) |
Ref | Expression |
---|---|
ltrelpr | ⊢ <P ⊆ (P × P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iltp 7179 | . 2 ⊢ <P = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))} | |
2 | opabssxp 4551 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))} ⊆ (P × P) | |
3 | 1, 2 | eqsstri 3079 | 1 ⊢ <P ⊆ (P × P) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ∈ wcel 1448 ∃wrex 2376 ⊆ wss 3021 {copab 3928 × cxp 4475 ‘cfv 5059 1st c1st 5967 2nd c2nd 5968 Qcnq 6989 Pcnp 7000 <P cltp 7004 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-in 3027 df-ss 3034 df-opab 3930 df-xp 4483 df-iltp 7179 |
This theorem is referenced by: ltprordil 7298 ltexprlemm 7309 ltexprlemopl 7310 ltexprlemlol 7311 ltexprlemopu 7312 ltexprlemupu 7313 ltexprlemdisj 7315 ltexprlemloc 7316 ltexprlemfl 7318 ltexprlemrl 7319 ltexprlemfu 7320 ltexprlemru 7321 ltexpri 7322 lteupri 7326 ltaprlem 7327 prplnqu 7329 caucvgprprlemk 7392 caucvgprprlemnkltj 7398 caucvgprprlemnkeqj 7399 caucvgprprlemnjltk 7400 caucvgprprlemnbj 7402 caucvgprprlemml 7403 caucvgprprlemlol 7407 caucvgprprlemupu 7409 gt0srpr 7444 lttrsr 7458 ltposr 7459 archsr 7477 |
Copyright terms: Public domain | W3C validator |