![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltrelpr | GIF version |
Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) |
Ref | Expression |
---|---|
ltrelpr | ⊢ <P ⊆ (P × P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iltp 7530 | . 2 ⊢ <P = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))} | |
2 | opabssxp 4733 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))} ⊆ (P × P) | |
3 | 1, 2 | eqsstri 3211 | 1 ⊢ <P ⊆ (P × P) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ∈ wcel 2164 ∃wrex 2473 ⊆ wss 3153 {copab 4089 × cxp 4657 ‘cfv 5254 1st c1st 6191 2nd c2nd 6192 Qcnq 7340 Pcnp 7351 <P cltp 7355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-in 3159 df-ss 3166 df-opab 4091 df-xp 4665 df-iltp 7530 |
This theorem is referenced by: ltprordil 7649 ltexprlemm 7660 ltexprlemopl 7661 ltexprlemlol 7662 ltexprlemopu 7663 ltexprlemupu 7664 ltexprlemdisj 7666 ltexprlemloc 7667 ltexprlemfl 7669 ltexprlemrl 7670 ltexprlemfu 7671 ltexprlemru 7672 ltexpri 7673 lteupri 7677 ltaprlem 7678 prplnqu 7680 caucvgprprlemk 7743 caucvgprprlemnkltj 7749 caucvgprprlemnkeqj 7750 caucvgprprlemnjltk 7751 caucvgprprlemnbj 7753 caucvgprprlemml 7754 caucvgprprlemlol 7758 caucvgprprlemupu 7760 suplocexprlemss 7775 suplocexprlemlub 7784 gt0srpr 7808 lttrsr 7822 ltposr 7823 archsr 7842 |
Copyright terms: Public domain | W3C validator |