Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltrelpr | GIF version |
Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) |
Ref | Expression |
---|---|
ltrelpr | ⊢ <P ⊆ (P × P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iltp 7432 | . 2 ⊢ <P = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))} | |
2 | opabssxp 4685 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))} ⊆ (P × P) | |
3 | 1, 2 | eqsstri 3179 | 1 ⊢ <P ⊆ (P × P) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ∈ wcel 2141 ∃wrex 2449 ⊆ wss 3121 {copab 4049 × cxp 4609 ‘cfv 5198 1st c1st 6117 2nd c2nd 6118 Qcnq 7242 Pcnp 7253 <P cltp 7257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-in 3127 df-ss 3134 df-opab 4051 df-xp 4617 df-iltp 7432 |
This theorem is referenced by: ltprordil 7551 ltexprlemm 7562 ltexprlemopl 7563 ltexprlemlol 7564 ltexprlemopu 7565 ltexprlemupu 7566 ltexprlemdisj 7568 ltexprlemloc 7569 ltexprlemfl 7571 ltexprlemrl 7572 ltexprlemfu 7573 ltexprlemru 7574 ltexpri 7575 lteupri 7579 ltaprlem 7580 prplnqu 7582 caucvgprprlemk 7645 caucvgprprlemnkltj 7651 caucvgprprlemnkeqj 7652 caucvgprprlemnjltk 7653 caucvgprprlemnbj 7655 caucvgprprlemml 7656 caucvgprprlemlol 7660 caucvgprprlemupu 7662 suplocexprlemss 7677 suplocexprlemlub 7686 gt0srpr 7710 lttrsr 7724 ltposr 7725 archsr 7744 |
Copyright terms: Public domain | W3C validator |