| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltrelpr | GIF version | ||
| Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) |
| Ref | Expression |
|---|---|
| ltrelpr | ⊢ <P ⊆ (P × P) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iltp 7583 | . 2 ⊢ <P = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))} | |
| 2 | opabssxp 4749 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))} ⊆ (P × P) | |
| 3 | 1, 2 | eqsstri 3225 | 1 ⊢ <P ⊆ (P × P) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∈ wcel 2176 ∃wrex 2485 ⊆ wss 3166 {copab 4104 × cxp 4673 ‘cfv 5271 1st c1st 6224 2nd c2nd 6225 Qcnq 7393 Pcnp 7404 <P cltp 7408 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-in 3172 df-ss 3179 df-opab 4106 df-xp 4681 df-iltp 7583 |
| This theorem is referenced by: ltprordil 7702 ltexprlemm 7713 ltexprlemopl 7714 ltexprlemlol 7715 ltexprlemopu 7716 ltexprlemupu 7717 ltexprlemdisj 7719 ltexprlemloc 7720 ltexprlemfl 7722 ltexprlemrl 7723 ltexprlemfu 7724 ltexprlemru 7725 ltexpri 7726 lteupri 7730 ltaprlem 7731 prplnqu 7733 caucvgprprlemk 7796 caucvgprprlemnkltj 7802 caucvgprprlemnkeqj 7803 caucvgprprlemnjltk 7804 caucvgprprlemnbj 7806 caucvgprprlemml 7807 caucvgprprlemlol 7811 caucvgprprlemupu 7813 suplocexprlemss 7828 suplocexprlemlub 7837 gt0srpr 7861 lttrsr 7875 ltposr 7876 archsr 7895 |
| Copyright terms: Public domain | W3C validator |