| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltrelpr | GIF version | ||
| Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) |
| Ref | Expression |
|---|---|
| ltrelpr | ⊢ <P ⊆ (P × P) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iltp 7556 | . 2 ⊢ <P = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))} | |
| 2 | opabssxp 4738 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))} ⊆ (P × P) | |
| 3 | 1, 2 | eqsstri 3216 | 1 ⊢ <P ⊆ (P × P) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∈ wcel 2167 ∃wrex 2476 ⊆ wss 3157 {copab 4094 × cxp 4662 ‘cfv 5259 1st c1st 6205 2nd c2nd 6206 Qcnq 7366 Pcnp 7377 <P cltp 7381 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-in 3163 df-ss 3170 df-opab 4096 df-xp 4670 df-iltp 7556 |
| This theorem is referenced by: ltprordil 7675 ltexprlemm 7686 ltexprlemopl 7687 ltexprlemlol 7688 ltexprlemopu 7689 ltexprlemupu 7690 ltexprlemdisj 7692 ltexprlemloc 7693 ltexprlemfl 7695 ltexprlemrl 7696 ltexprlemfu 7697 ltexprlemru 7698 ltexpri 7699 lteupri 7703 ltaprlem 7704 prplnqu 7706 caucvgprprlemk 7769 caucvgprprlemnkltj 7775 caucvgprprlemnkeqj 7776 caucvgprprlemnjltk 7777 caucvgprprlemnbj 7779 caucvgprprlemml 7780 caucvgprprlemlol 7784 caucvgprprlemupu 7786 suplocexprlemss 7801 suplocexprlemlub 7810 gt0srpr 7834 lttrsr 7848 ltposr 7849 archsr 7868 |
| Copyright terms: Public domain | W3C validator |