![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltrelpr | GIF version |
Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) |
Ref | Expression |
---|---|
ltrelpr | ⊢ <P ⊆ (P × P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iltp 7532 | . 2 ⊢ <P = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))} | |
2 | opabssxp 4734 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))} ⊆ (P × P) | |
3 | 1, 2 | eqsstri 3212 | 1 ⊢ <P ⊆ (P × P) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ∈ wcel 2164 ∃wrex 2473 ⊆ wss 3154 {copab 4090 × cxp 4658 ‘cfv 5255 1st c1st 6193 2nd c2nd 6194 Qcnq 7342 Pcnp 7353 <P cltp 7357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-in 3160 df-ss 3167 df-opab 4092 df-xp 4666 df-iltp 7532 |
This theorem is referenced by: ltprordil 7651 ltexprlemm 7662 ltexprlemopl 7663 ltexprlemlol 7664 ltexprlemopu 7665 ltexprlemupu 7666 ltexprlemdisj 7668 ltexprlemloc 7669 ltexprlemfl 7671 ltexprlemrl 7672 ltexprlemfu 7673 ltexprlemru 7674 ltexpri 7675 lteupri 7679 ltaprlem 7680 prplnqu 7682 caucvgprprlemk 7745 caucvgprprlemnkltj 7751 caucvgprprlemnkeqj 7752 caucvgprprlemnjltk 7753 caucvgprprlemnbj 7755 caucvgprprlemml 7756 caucvgprprlemlol 7760 caucvgprprlemupu 7762 suplocexprlemss 7777 suplocexprlemlub 7786 gt0srpr 7810 lttrsr 7824 ltposr 7825 archsr 7844 |
Copyright terms: Public domain | W3C validator |