ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrelpr GIF version

Theorem ltrelpr 7618
Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.)
Assertion
Ref Expression
ltrelpr <P ⊆ (P × P)

Proof of Theorem ltrelpr
Dummy variables 𝑥 𝑞 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iltp 7583 . 2 <P = {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)))}
2 opabssxp 4749 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)))} ⊆ (P × P)
31, 2eqsstri 3225 1 <P ⊆ (P × P)
Colors of variables: wff set class
Syntax hints:  wa 104  wcel 2176  wrex 2485  wss 3166  {copab 4104   × cxp 4673  cfv 5271  1st c1st 6224  2nd c2nd 6225  Qcnq 7393  Pcnp 7404  <P cltp 7408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-in 3172  df-ss 3179  df-opab 4106  df-xp 4681  df-iltp 7583
This theorem is referenced by:  ltprordil  7702  ltexprlemm  7713  ltexprlemopl  7714  ltexprlemlol  7715  ltexprlemopu  7716  ltexprlemupu  7717  ltexprlemdisj  7719  ltexprlemloc  7720  ltexprlemfl  7722  ltexprlemrl  7723  ltexprlemfu  7724  ltexprlemru  7725  ltexpri  7726  lteupri  7730  ltaprlem  7731  prplnqu  7733  caucvgprprlemk  7796  caucvgprprlemnkltj  7802  caucvgprprlemnkeqj  7803  caucvgprprlemnjltk  7804  caucvgprprlemnbj  7806  caucvgprprlemml  7807  caucvgprprlemlol  7811  caucvgprprlemupu  7813  suplocexprlemss  7828  suplocexprlemlub  7837  gt0srpr  7861  lttrsr  7875  ltposr  7876  archsr  7895
  Copyright terms: Public domain W3C validator