| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltrelpr | GIF version | ||
| Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) |
| Ref | Expression |
|---|---|
| ltrelpr | ⊢ <P ⊆ (P × P) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iltp 7653 | . 2 ⊢ <P = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))} | |
| 2 | opabssxp 4792 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))} ⊆ (P × P) | |
| 3 | 1, 2 | eqsstri 3256 | 1 ⊢ <P ⊆ (P × P) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∈ wcel 2200 ∃wrex 2509 ⊆ wss 3197 {copab 4143 × cxp 4716 ‘cfv 5317 1st c1st 6282 2nd c2nd 6283 Qcnq 7463 Pcnp 7474 <P cltp 7478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-in 3203 df-ss 3210 df-opab 4145 df-xp 4724 df-iltp 7653 |
| This theorem is referenced by: ltprordil 7772 ltexprlemm 7783 ltexprlemopl 7784 ltexprlemlol 7785 ltexprlemopu 7786 ltexprlemupu 7787 ltexprlemdisj 7789 ltexprlemloc 7790 ltexprlemfl 7792 ltexprlemrl 7793 ltexprlemfu 7794 ltexprlemru 7795 ltexpri 7796 lteupri 7800 ltaprlem 7801 prplnqu 7803 caucvgprprlemk 7866 caucvgprprlemnkltj 7872 caucvgprprlemnkeqj 7873 caucvgprprlemnjltk 7874 caucvgprprlemnbj 7876 caucvgprprlemml 7877 caucvgprprlemlol 7881 caucvgprprlemupu 7883 suplocexprlemss 7898 suplocexprlemlub 7907 gt0srpr 7931 lttrsr 7945 ltposr 7946 archsr 7965 |
| Copyright terms: Public domain | W3C validator |