Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltrelpr | GIF version |
Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) |
Ref | Expression |
---|---|
ltrelpr | ⊢ <P ⊆ (P × P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iltp 7411 | . 2 ⊢ <P = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))} | |
2 | opabssxp 4678 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))} ⊆ (P × P) | |
3 | 1, 2 | eqsstri 3174 | 1 ⊢ <P ⊆ (P × P) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ∈ wcel 2136 ∃wrex 2445 ⊆ wss 3116 {copab 4042 × cxp 4602 ‘cfv 5188 1st c1st 6106 2nd c2nd 6107 Qcnq 7221 Pcnp 7232 <P cltp 7236 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-in 3122 df-ss 3129 df-opab 4044 df-xp 4610 df-iltp 7411 |
This theorem is referenced by: ltprordil 7530 ltexprlemm 7541 ltexprlemopl 7542 ltexprlemlol 7543 ltexprlemopu 7544 ltexprlemupu 7545 ltexprlemdisj 7547 ltexprlemloc 7548 ltexprlemfl 7550 ltexprlemrl 7551 ltexprlemfu 7552 ltexprlemru 7553 ltexpri 7554 lteupri 7558 ltaprlem 7559 prplnqu 7561 caucvgprprlemk 7624 caucvgprprlemnkltj 7630 caucvgprprlemnkeqj 7631 caucvgprprlemnjltk 7632 caucvgprprlemnbj 7634 caucvgprprlemml 7635 caucvgprprlemlol 7639 caucvgprprlemupu 7641 suplocexprlemss 7656 suplocexprlemlub 7665 gt0srpr 7689 lttrsr 7703 ltposr 7704 archsr 7723 |
Copyright terms: Public domain | W3C validator |