| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltrelpr | GIF version | ||
| Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) |
| Ref | Expression |
|---|---|
| ltrelpr | ⊢ <P ⊆ (P × P) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iltp 7613 | . 2 ⊢ <P = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))} | |
| 2 | opabssxp 4762 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))} ⊆ (P × P) | |
| 3 | 1, 2 | eqsstri 3229 | 1 ⊢ <P ⊆ (P × P) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∈ wcel 2177 ∃wrex 2486 ⊆ wss 3170 {copab 4115 × cxp 4686 ‘cfv 5285 1st c1st 6242 2nd c2nd 6243 Qcnq 7423 Pcnp 7434 <P cltp 7438 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-in 3176 df-ss 3183 df-opab 4117 df-xp 4694 df-iltp 7613 |
| This theorem is referenced by: ltprordil 7732 ltexprlemm 7743 ltexprlemopl 7744 ltexprlemlol 7745 ltexprlemopu 7746 ltexprlemupu 7747 ltexprlemdisj 7749 ltexprlemloc 7750 ltexprlemfl 7752 ltexprlemrl 7753 ltexprlemfu 7754 ltexprlemru 7755 ltexpri 7756 lteupri 7760 ltaprlem 7761 prplnqu 7763 caucvgprprlemk 7826 caucvgprprlemnkltj 7832 caucvgprprlemnkeqj 7833 caucvgprprlemnjltk 7834 caucvgprprlemnbj 7836 caucvgprprlemml 7837 caucvgprprlemlol 7841 caucvgprprlemupu 7843 suplocexprlemss 7858 suplocexprlemlub 7867 gt0srpr 7891 lttrsr 7905 ltposr 7906 archsr 7925 |
| Copyright terms: Public domain | W3C validator |