| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltrelpr | GIF version | ||
| Description: Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) |
| Ref | Expression |
|---|---|
| ltrelpr | ⊢ <P ⊆ (P × P) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iltp 7582 | . 2 ⊢ <P = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))} | |
| 2 | opabssxp 4748 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))} ⊆ (P × P) | |
| 3 | 1, 2 | eqsstri 3224 | 1 ⊢ <P ⊆ (P × P) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∈ wcel 2175 ∃wrex 2484 ⊆ wss 3165 {copab 4103 × cxp 4672 ‘cfv 5270 1st c1st 6223 2nd c2nd 6224 Qcnq 7392 Pcnp 7403 <P cltp 7407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-in 3171 df-ss 3178 df-opab 4105 df-xp 4680 df-iltp 7582 |
| This theorem is referenced by: ltprordil 7701 ltexprlemm 7712 ltexprlemopl 7713 ltexprlemlol 7714 ltexprlemopu 7715 ltexprlemupu 7716 ltexprlemdisj 7718 ltexprlemloc 7719 ltexprlemfl 7721 ltexprlemrl 7722 ltexprlemfu 7723 ltexprlemru 7724 ltexpri 7725 lteupri 7729 ltaprlem 7730 prplnqu 7732 caucvgprprlemk 7795 caucvgprprlemnkltj 7801 caucvgprprlemnkeqj 7802 caucvgprprlemnjltk 7803 caucvgprprlemnbj 7805 caucvgprprlemml 7806 caucvgprprlemlol 7810 caucvgprprlemupu 7812 suplocexprlemss 7827 suplocexprlemlub 7836 gt0srpr 7860 lttrsr 7874 ltposr 7875 archsr 7894 |
| Copyright terms: Public domain | W3C validator |