| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltdfpr | GIF version | ||
| Description: More convenient form of df-iltp 7554. (Contributed by Jim Kingdon, 15-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltdfpr | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝐴) ∧ 𝑞 ∈ (1st ‘𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4035 | . . 3 ⊢ (𝐴<P 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ <P ) | |
| 2 | df-iltp 7554 | . . . 4 ⊢ <P = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))} | |
| 3 | 2 | eleq2i 2263 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ <P ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))}) |
| 4 | 1, 3 | bitri 184 | . 2 ⊢ (𝐴<P 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))}) |
| 5 | simpl 109 | . . . . . . 7 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑥 = 𝐴) | |
| 6 | 5 | fveq2d 5565 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (2nd ‘𝑥) = (2nd ‘𝐴)) |
| 7 | 6 | eleq2d 2266 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑞 ∈ (2nd ‘𝑥) ↔ 𝑞 ∈ (2nd ‘𝐴))) |
| 8 | simpr 110 | . . . . . . 7 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) | |
| 9 | 8 | fveq2d 5565 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (1st ‘𝑦) = (1st ‘𝐵)) |
| 10 | 9 | eleq2d 2266 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑞 ∈ (1st ‘𝑦) ↔ 𝑞 ∈ (1st ‘𝐵))) |
| 11 | 7, 10 | anbi12d 473 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)) ↔ (𝑞 ∈ (2nd ‘𝐴) ∧ 𝑞 ∈ (1st ‘𝐵)))) |
| 12 | 11 | rexbidv 2498 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)) ↔ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝐴) ∧ 𝑞 ∈ (1st ‘𝐵)))) |
| 13 | 12 | opelopab2a 4300 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))} ↔ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝐴) ∧ 𝑞 ∈ (1st ‘𝐵)))) |
| 14 | 4, 13 | bitrid 192 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝐴) ∧ 𝑞 ∈ (1st ‘𝐵)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 〈cop 3626 class class class wbr 4034 {copab 4094 ‘cfv 5259 1st c1st 6205 2nd c2nd 6206 Qcnq 7364 Pcnp 7375 <P cltp 7379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-iota 5220 df-fv 5267 df-iltp 7554 |
| This theorem is referenced by: nqprl 7635 nqpru 7636 ltprordil 7673 ltnqpr 7677 ltnqpri 7678 ltpopr 7679 ltsopr 7680 ltaddpr 7681 ltexprlemm 7684 ltexprlemopu 7687 ltexprlemru 7696 aptiprleml 7723 aptiprlemu 7724 archpr 7727 cauappcvgprlem2 7744 caucvgprlem2 7764 caucvgprprlemopu 7783 caucvgprprlemexbt 7790 caucvgprprlem2 7794 suplocexprlemloc 7805 suplocexprlemub 7807 suplocexprlemlub 7808 |
| Copyright terms: Public domain | W3C validator |