ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltdfpr GIF version

Theorem ltdfpr 7504
Description: More convenient form of df-iltp 7468. (Contributed by Jim Kingdon, 15-Dec-2019.)
Assertion
Ref Expression
ltdfpr ((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵))))
Distinct variable groups:   𝐴,𝑞   𝐵,𝑞

Proof of Theorem ltdfpr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4004 . . 3 (𝐴<P 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ <P )
2 df-iltp 7468 . . . 4 <P = {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)))}
32eleq2i 2244 . . 3 (⟨𝐴, 𝐵⟩ ∈ <P ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)))})
41, 3bitri 184 . 2 (𝐴<P 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)))})
5 simpl 109 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑥 = 𝐴)
65fveq2d 5519 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (2nd𝑥) = (2nd𝐴))
76eleq2d 2247 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑞 ∈ (2nd𝑥) ↔ 𝑞 ∈ (2nd𝐴)))
8 simpr 110 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑦 = 𝐵)
98fveq2d 5519 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (1st𝑦) = (1st𝐵))
109eleq2d 2247 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑞 ∈ (1st𝑦) ↔ 𝑞 ∈ (1st𝐵)))
117, 10anbi12d 473 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)) ↔ (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵))))
1211rexbidv 2478 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)) ↔ ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵))))
1312opelopab2a 4265 . 2 ((𝐴P𝐵P) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)))} ↔ ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵))))
144, 13bitrid 192 1 ((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wrex 2456  cop 3595   class class class wbr 4003  {copab 4063  cfv 5216  1st c1st 6138  2nd c2nd 6139  Qcnq 7278  Pcnp 7289  <P cltp 7293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-iota 5178  df-fv 5224  df-iltp 7468
This theorem is referenced by:  nqprl  7549  nqpru  7550  ltprordil  7587  ltnqpr  7591  ltnqpri  7592  ltpopr  7593  ltsopr  7594  ltaddpr  7595  ltexprlemm  7598  ltexprlemopu  7601  ltexprlemru  7610  aptiprleml  7637  aptiprlemu  7638  archpr  7641  cauappcvgprlem2  7658  caucvgprlem2  7678  caucvgprprlemopu  7697  caucvgprprlemexbt  7704  caucvgprprlem2  7708  suplocexprlemloc  7719  suplocexprlemub  7721  suplocexprlemlub  7722
  Copyright terms: Public domain W3C validator