![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltdfpr | GIF version |
Description: More convenient form of df-iltp 7471. (Contributed by Jim Kingdon, 15-Dec-2019.) |
Ref | Expression |
---|---|
ltdfpr | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝐴) ∧ 𝑞 ∈ (1st ‘𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 4006 | . . 3 ⊢ (𝐴<P 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ <P ) | |
2 | df-iltp 7471 | . . . 4 ⊢ <P = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))} | |
3 | 2 | eleq2i 2244 | . . 3 ⊢ (⟨𝐴, 𝐵⟩ ∈ <P ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))}) |
4 | 1, 3 | bitri 184 | . 2 ⊢ (𝐴<P 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))}) |
5 | simpl 109 | . . . . . . 7 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑥 = 𝐴) | |
6 | 5 | fveq2d 5521 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (2nd ‘𝑥) = (2nd ‘𝐴)) |
7 | 6 | eleq2d 2247 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑞 ∈ (2nd ‘𝑥) ↔ 𝑞 ∈ (2nd ‘𝐴))) |
8 | simpr 110 | . . . . . . 7 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) | |
9 | 8 | fveq2d 5521 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (1st ‘𝑦) = (1st ‘𝐵)) |
10 | 9 | eleq2d 2247 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑞 ∈ (1st ‘𝑦) ↔ 𝑞 ∈ (1st ‘𝐵))) |
11 | 7, 10 | anbi12d 473 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)) ↔ (𝑞 ∈ (2nd ‘𝐴) ∧ 𝑞 ∈ (1st ‘𝐵)))) |
12 | 11 | rexbidv 2478 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)) ↔ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝐴) ∧ 𝑞 ∈ (1st ‘𝐵)))) |
13 | 12 | opelopab2a 4267 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))} ↔ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝐴) ∧ 𝑞 ∈ (1st ‘𝐵)))) |
14 | 4, 13 | bitrid 192 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝐴) ∧ 𝑞 ∈ (1st ‘𝐵)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ∃wrex 2456 ⟨cop 3597 class class class wbr 4005 {copab 4065 ‘cfv 5218 1st c1st 6141 2nd c2nd 6142 Qcnq 7281 Pcnp 7292 <P cltp 7296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-iota 5180 df-fv 5226 df-iltp 7471 |
This theorem is referenced by: nqprl 7552 nqpru 7553 ltprordil 7590 ltnqpr 7594 ltnqpri 7595 ltpopr 7596 ltsopr 7597 ltaddpr 7598 ltexprlemm 7601 ltexprlemopu 7604 ltexprlemru 7613 aptiprleml 7640 aptiprlemu 7641 archpr 7644 cauappcvgprlem2 7661 caucvgprlem2 7681 caucvgprprlemopu 7700 caucvgprprlemexbt 7707 caucvgprprlem2 7711 suplocexprlemloc 7722 suplocexprlemub 7724 suplocexprlemlub 7725 |
Copyright terms: Public domain | W3C validator |