ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltdfpr GIF version

Theorem ltdfpr 7639
Description: More convenient form of df-iltp 7603. (Contributed by Jim Kingdon, 15-Dec-2019.)
Assertion
Ref Expression
ltdfpr ((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵))))
Distinct variable groups:   𝐴,𝑞   𝐵,𝑞

Proof of Theorem ltdfpr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4052 . . 3 (𝐴<P 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ <P )
2 df-iltp 7603 . . . 4 <P = {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)))}
32eleq2i 2273 . . 3 (⟨𝐴, 𝐵⟩ ∈ <P ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)))})
41, 3bitri 184 . 2 (𝐴<P 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)))})
5 simpl 109 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑥 = 𝐴)
65fveq2d 5593 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (2nd𝑥) = (2nd𝐴))
76eleq2d 2276 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑞 ∈ (2nd𝑥) ↔ 𝑞 ∈ (2nd𝐴)))
8 simpr 110 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑦 = 𝐵)
98fveq2d 5593 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (1st𝑦) = (1st𝐵))
109eleq2d 2276 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑞 ∈ (1st𝑦) ↔ 𝑞 ∈ (1st𝐵)))
117, 10anbi12d 473 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)) ↔ (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵))))
1211rexbidv 2508 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)) ↔ ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵))))
1312opelopab2a 4319 . 2 ((𝐴P𝐵P) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)))} ↔ ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵))))
144, 13bitrid 192 1 ((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wrex 2486  cop 3641   class class class wbr 4051  {copab 4112  cfv 5280  1st c1st 6237  2nd c2nd 6238  Qcnq 7413  Pcnp 7424  <P cltp 7428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-iota 5241  df-fv 5288  df-iltp 7603
This theorem is referenced by:  nqprl  7684  nqpru  7685  ltprordil  7722  ltnqpr  7726  ltnqpri  7727  ltpopr  7728  ltsopr  7729  ltaddpr  7730  ltexprlemm  7733  ltexprlemopu  7736  ltexprlemru  7745  aptiprleml  7772  aptiprlemu  7773  archpr  7776  cauappcvgprlem2  7793  caucvgprlem2  7813  caucvgprprlemopu  7832  caucvgprprlemexbt  7839  caucvgprprlem2  7843  suplocexprlemloc  7854  suplocexprlemub  7856  suplocexprlemlub  7857
  Copyright terms: Public domain W3C validator