![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltdfpr | GIF version |
Description: More convenient form of df-iltp 7468. (Contributed by Jim Kingdon, 15-Dec-2019.) |
Ref | Expression |
---|---|
ltdfpr | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝐴) ∧ 𝑞 ∈ (1st ‘𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 4004 | . . 3 ⊢ (𝐴<P 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ <P ) | |
2 | df-iltp 7468 | . . . 4 ⊢ <P = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))} | |
3 | 2 | eleq2i 2244 | . . 3 ⊢ (⟨𝐴, 𝐵⟩ ∈ <P ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))}) |
4 | 1, 3 | bitri 184 | . 2 ⊢ (𝐴<P 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))}) |
5 | simpl 109 | . . . . . . 7 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑥 = 𝐴) | |
6 | 5 | fveq2d 5519 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (2nd ‘𝑥) = (2nd ‘𝐴)) |
7 | 6 | eleq2d 2247 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑞 ∈ (2nd ‘𝑥) ↔ 𝑞 ∈ (2nd ‘𝐴))) |
8 | simpr 110 | . . . . . . 7 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) | |
9 | 8 | fveq2d 5519 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (1st ‘𝑦) = (1st ‘𝐵)) |
10 | 9 | eleq2d 2247 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑞 ∈ (1st ‘𝑦) ↔ 𝑞 ∈ (1st ‘𝐵))) |
11 | 7, 10 | anbi12d 473 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)) ↔ (𝑞 ∈ (2nd ‘𝐴) ∧ 𝑞 ∈ (1st ‘𝐵)))) |
12 | 11 | rexbidv 2478 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)) ↔ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝐴) ∧ 𝑞 ∈ (1st ‘𝐵)))) |
13 | 12 | opelopab2a 4265 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))} ↔ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝐴) ∧ 𝑞 ∈ (1st ‘𝐵)))) |
14 | 4, 13 | bitrid 192 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝐴) ∧ 𝑞 ∈ (1st ‘𝐵)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ∃wrex 2456 ⟨cop 3595 class class class wbr 4003 {copab 4063 ‘cfv 5216 1st c1st 6138 2nd c2nd 6139 Qcnq 7278 Pcnp 7289 <P cltp 7293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2739 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-br 4004 df-opab 4065 df-iota 5178 df-fv 5224 df-iltp 7468 |
This theorem is referenced by: nqprl 7549 nqpru 7550 ltprordil 7587 ltnqpr 7591 ltnqpri 7592 ltpopr 7593 ltsopr 7594 ltaddpr 7595 ltexprlemm 7598 ltexprlemopu 7601 ltexprlemru 7610 aptiprleml 7637 aptiprlemu 7638 archpr 7641 cauappcvgprlem2 7658 caucvgprlem2 7678 caucvgprprlemopu 7697 caucvgprprlemexbt 7704 caucvgprprlem2 7708 suplocexprlemloc 7719 suplocexprlemub 7721 suplocexprlemlub 7722 |
Copyright terms: Public domain | W3C validator |