ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltdfpr GIF version

Theorem ltdfpr 7256
Description: More convenient form of df-iltp 7220. (Contributed by Jim Kingdon, 15-Dec-2019.)
Assertion
Ref Expression
ltdfpr ((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵))))
Distinct variable groups:   𝐴,𝑞   𝐵,𝑞

Proof of Theorem ltdfpr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 3894 . . 3 (𝐴<P 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ <P )
2 df-iltp 7220 . . . 4 <P = {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)))}
32eleq2i 2179 . . 3 (⟨𝐴, 𝐵⟩ ∈ <P ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)))})
41, 3bitri 183 . 2 (𝐴<P 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)))})
5 simpl 108 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑥 = 𝐴)
65fveq2d 5377 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (2nd𝑥) = (2nd𝐴))
76eleq2d 2182 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑞 ∈ (2nd𝑥) ↔ 𝑞 ∈ (2nd𝐴)))
8 simpr 109 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑦 = 𝐵)
98fveq2d 5377 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (1st𝑦) = (1st𝐵))
109eleq2d 2182 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑞 ∈ (1st𝑦) ↔ 𝑞 ∈ (1st𝐵)))
117, 10anbi12d 462 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)) ↔ (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵))))
1211rexbidv 2410 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)) ↔ ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵))))
1312opelopab2a 4145 . 2 ((𝐴P𝐵P) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)))} ↔ ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵))))
144, 13syl5bb 191 1 ((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1312  wcel 1461  wrex 2389  cop 3494   class class class wbr 3893  {copab 3946  cfv 5079  1st c1st 5988  2nd c2nd 5989  Qcnq 7030  Pcnp 7041  <P cltp 7045
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-rex 2394  df-v 2657  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-br 3894  df-opab 3948  df-iota 5044  df-fv 5087  df-iltp 7220
This theorem is referenced by:  nqprl  7301  nqpru  7302  ltprordil  7339  ltnqpr  7343  ltnqpri  7344  ltpopr  7345  ltsopr  7346  ltaddpr  7347  ltexprlemm  7350  ltexprlemopu  7353  ltexprlemru  7362  aptiprleml  7389  aptiprlemu  7390  archpr  7393  cauappcvgprlem2  7410  caucvgprlem2  7430  caucvgprprlemopu  7449  caucvgprprlemexbt  7456  caucvgprprlem2  7460
  Copyright terms: Public domain W3C validator