| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltdfpr | GIF version | ||
| Description: More convenient form of df-iltp 7565. (Contributed by Jim Kingdon, 15-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltdfpr | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝐴) ∧ 𝑞 ∈ (1st ‘𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4044 | . . 3 ⊢ (𝐴<P 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ <P ) | |
| 2 | df-iltp 7565 | . . . 4 ⊢ <P = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))} | |
| 3 | 2 | eleq2i 2271 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ <P ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))}) |
| 4 | 1, 3 | bitri 184 | . 2 ⊢ (𝐴<P 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))}) |
| 5 | simpl 109 | . . . . . . 7 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑥 = 𝐴) | |
| 6 | 5 | fveq2d 5574 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (2nd ‘𝑥) = (2nd ‘𝐴)) |
| 7 | 6 | eleq2d 2274 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑞 ∈ (2nd ‘𝑥) ↔ 𝑞 ∈ (2nd ‘𝐴))) |
| 8 | simpr 110 | . . . . . . 7 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) | |
| 9 | 8 | fveq2d 5574 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (1st ‘𝑦) = (1st ‘𝐵)) |
| 10 | 9 | eleq2d 2274 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑞 ∈ (1st ‘𝑦) ↔ 𝑞 ∈ (1st ‘𝐵))) |
| 11 | 7, 10 | anbi12d 473 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)) ↔ (𝑞 ∈ (2nd ‘𝐴) ∧ 𝑞 ∈ (1st ‘𝐵)))) |
| 12 | 11 | rexbidv 2506 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)) ↔ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝐴) ∧ 𝑞 ∈ (1st ‘𝐵)))) |
| 13 | 12 | opelopab2a 4309 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))} ↔ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝐴) ∧ 𝑞 ∈ (1st ‘𝐵)))) |
| 14 | 4, 13 | bitrid 192 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝐴) ∧ 𝑞 ∈ (1st ‘𝐵)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 ∃wrex 2484 〈cop 3635 class class class wbr 4043 {copab 4103 ‘cfv 5268 1st c1st 6214 2nd c2nd 6215 Qcnq 7375 Pcnp 7386 <P cltp 7390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-iota 5229 df-fv 5276 df-iltp 7565 |
| This theorem is referenced by: nqprl 7646 nqpru 7647 ltprordil 7684 ltnqpr 7688 ltnqpri 7689 ltpopr 7690 ltsopr 7691 ltaddpr 7692 ltexprlemm 7695 ltexprlemopu 7698 ltexprlemru 7707 aptiprleml 7734 aptiprlemu 7735 archpr 7738 cauappcvgprlem2 7755 caucvgprlem2 7775 caucvgprprlemopu 7794 caucvgprprlemexbt 7801 caucvgprprlem2 7805 suplocexprlemloc 7816 suplocexprlemub 7818 suplocexprlemlub 7819 |
| Copyright terms: Public domain | W3C validator |