HomeHome Intuitionistic Logic Explorer
Theorem List (p. 75 of 142)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7401-7500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremenq0ex 7401 The equivalence relation for positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.)
~Q0 ∈ V
 
Theoremnq0ex 7402 The class of positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.)
Q0 ∈ V
 
Theoremnqnq0 7403 A positive fraction is a nonnegative fraction. (Contributed by Jim Kingdon, 18-Nov-2019.)
QQ0
 
Theoremnq0nn 7404* Decomposition of a nonnegative fraction into numerator and denominator. (Contributed by Jim Kingdon, 24-Nov-2019.)
(𝐴Q0 → ∃𝑤𝑣((𝑤 ∈ ω ∧ 𝑣N) ∧ 𝐴 = [⟨𝑤, 𝑣⟩] ~Q0 ))
 
Theoremaddcmpblnq0 7405 Lemma showing compatibility of addition on nonnegative fractions. (Contributed by Jim Kingdon, 23-Nov-2019.)
((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (((𝐴 ·o 𝐷) = (𝐵 ·o 𝐶) ∧ (𝐹 ·o 𝑆) = (𝐺 ·o 𝑅)) → ⟨((𝐴 ·o 𝐺) +o (𝐵 ·o 𝐹)), (𝐵 ·o 𝐺)⟩ ~Q0 ⟨((𝐶 ·o 𝑆) +o (𝐷 ·o 𝑅)), (𝐷 ·o 𝑆)⟩))
 
Theoremmulcmpblnq0 7406 Lemma showing compatibility of multiplication on nonnegative fractions. (Contributed by Jim Kingdon, 20-Nov-2019.)
((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (((𝐴 ·o 𝐷) = (𝐵 ·o 𝐶) ∧ (𝐹 ·o 𝑆) = (𝐺 ·o 𝑅)) → ⟨(𝐴 ·o 𝐹), (𝐵 ·o 𝐺)⟩ ~Q0 ⟨(𝐶 ·o 𝑅), (𝐷 ·o 𝑆)⟩))
 
Theoremmulcanenq0ec 7407 Lemma for distributive law: cancellation of common factor. (Contributed by Jim Kingdon, 29-Nov-2019.)
((𝐴N𝐵 ∈ ω ∧ 𝐶N) → [⟨(𝐴 ·o 𝐵), (𝐴 ·o 𝐶)⟩] ~Q0 = [⟨𝐵, 𝐶⟩] ~Q0 )
 
Theoremnnnq0lem1 7408* Decomposing nonnegative fractions into natural numbers. Lemma for addnnnq0 7411 and mulnnnq0 7412. (Contributed by Jim Kingdon, 23-Nov-2019.)
(((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → ((((𝑤 ∈ ω ∧ 𝑣N) ∧ (𝑠 ∈ ω ∧ 𝑓N)) ∧ ((𝑢 ∈ ω ∧ 𝑡N) ∧ (𝑔 ∈ ω ∧ N))) ∧ ((𝑤 ·o 𝑓) = (𝑣 ·o 𝑠) ∧ (𝑢 ·o ) = (𝑡 ·o 𝑔))))
 
Theoremaddnq0mo 7409* There is at most one result from adding nonnegative fractions. (Contributed by Jim Kingdon, 23-Nov-2019.)
((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ))
 
Theoremmulnq0mo 7410* There is at most one result from multiplying nonnegative fractions. (Contributed by Jim Kingdon, 20-Nov-2019.)
((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)⟩] ~Q0 ))
 
Theoremaddnnnq0 7411 Addition of nonnegative fractions in terms of natural numbers. (Contributed by Jim Kingdon, 22-Nov-2019.)
(((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q0 +Q0 [⟨𝐶, 𝐷⟩] ~Q0 ) = [⟨((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)⟩] ~Q0 )
 
Theoremmulnnnq0 7412 Multiplication of nonnegative fractions in terms of natural numbers. (Contributed by Jim Kingdon, 19-Nov-2019.)
(((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q0 ·Q0 [⟨𝐶, 𝐷⟩] ~Q0 ) = [⟨(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)⟩] ~Q0 )
 
Theoremaddclnq0 7413 Closure of addition on nonnegative fractions. (Contributed by Jim Kingdon, 29-Nov-2019.)
((𝐴Q0𝐵Q0) → (𝐴 +Q0 𝐵) ∈ Q0)
 
Theoremmulclnq0 7414 Closure of multiplication on nonnegative fractions. (Contributed by Jim Kingdon, 30-Nov-2019.)
((𝐴Q0𝐵Q0) → (𝐴 ·Q0 𝐵) ∈ Q0)
 
Theoremnqpnq0nq 7415 A positive fraction plus a nonnegative fraction is a positive fraction. (Contributed by Jim Kingdon, 30-Nov-2019.)
((𝐴Q𝐵Q0) → (𝐴 +Q0 𝐵) ∈ Q)
 
Theoremnqnq0a 7416 Addition of positive fractions is equal with +Q or +Q0. (Contributed by Jim Kingdon, 10-Nov-2019.)
((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) = (𝐴 +Q0 𝐵))
 
Theoremnqnq0m 7417 Multiplication of positive fractions is equal with ·Q or ·Q0. (Contributed by Jim Kingdon, 10-Nov-2019.)
((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) = (𝐴 ·Q0 𝐵))
 
Theoremnq0m0r 7418 Multiplication with zero for nonnegative fractions. (Contributed by Jim Kingdon, 5-Nov-2019.)
(𝐴Q0 → (0Q0 ·Q0 𝐴) = 0Q0)
 
Theoremnq0a0 7419 Addition with zero for nonnegative fractions. (Contributed by Jim Kingdon, 5-Nov-2019.)
(𝐴Q0 → (𝐴 +Q0 0Q0) = 𝐴)
 
Theoremnnanq0 7420 Addition of nonnegative fractions with a common denominator. You can add two fractions with the same denominator by adding their numerators and keeping the same denominator. (Contributed by Jim Kingdon, 1-Dec-2019.)
((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴N) → [⟨(𝑁 +o 𝑀), 𝐴⟩] ~Q0 = ([⟨𝑁, 𝐴⟩] ~Q0 +Q0 [⟨𝑀, 𝐴⟩] ~Q0 ))
 
Theoremdistrnq0 7421 Multiplication of nonnegative fractions is distributive. (Contributed by Jim Kingdon, 27-Nov-2019.)
((𝐴Q0𝐵Q0𝐶Q0) → (𝐴 ·Q0 (𝐵 +Q0 𝐶)) = ((𝐴 ·Q0 𝐵) +Q0 (𝐴 ·Q0 𝐶)))
 
Theoremmulcomnq0 7422 Multiplication of nonnegative fractions is commutative. (Contributed by Jim Kingdon, 27-Nov-2019.)
((𝐴Q0𝐵Q0) → (𝐴 ·Q0 𝐵) = (𝐵 ·Q0 𝐴))
 
Theoremaddassnq0lemcl 7423 A natural number closure law. Lemma for addassnq0 7424. (Contributed by Jim Kingdon, 3-Dec-2019.)
(((𝐼 ∈ ω ∧ 𝐽N) ∧ (𝐾 ∈ ω ∧ 𝐿N)) → (((𝐼 ·o 𝐿) +o (𝐽 ·o 𝐾)) ∈ ω ∧ (𝐽 ·o 𝐿) ∈ N))
 
Theoremaddassnq0 7424 Addition of nonnegative fractions is associative. (Contributed by Jim Kingdon, 29-Nov-2019.)
((𝐴Q0𝐵Q0𝐶Q0) → ((𝐴 +Q0 𝐵) +Q0 𝐶) = (𝐴 +Q0 (𝐵 +Q0 𝐶)))
 
Theoremdistnq0r 7425 Multiplication of nonnegative fractions is distributive. Version of distrnq0 7421 with the multiplications commuted. (Contributed by Jim Kingdon, 29-Nov-2019.)
((𝐴Q0𝐵Q0𝐶Q0) → ((𝐵 +Q0 𝐶) ·Q0 𝐴) = ((𝐵 ·Q0 𝐴) +Q0 (𝐶 ·Q0 𝐴)))
 
Theoremaddpinq1 7426 Addition of one to the numerator of a fraction whose denominator is one. (Contributed by Jim Kingdon, 26-Apr-2020.)
(𝐴N → [⟨(𝐴 +N 1o), 1o⟩] ~Q = ([⟨𝐴, 1o⟩] ~Q +Q 1Q))
 
Theoremnq02m 7427 Multiply a nonnegative fraction by two. (Contributed by Jim Kingdon, 29-Nov-2019.)
(𝐴Q0 → ([⟨2o, 1o⟩] ~Q0 ·Q0 𝐴) = (𝐴 +Q0 𝐴))
 
Definitiondf-inp 7428* Define the set of positive reals. A "Dedekind cut" is a partition of the positive rational numbers into two classes such that all the numbers of one class are less than all the numbers of the other.

Here we follow the definition of a Dedekind cut from Definition 11.2.1 of [HoTT], p. (varies) with the one exception that we define it over positive rational numbers rather than all rational numbers.

A Dedekind cut is an ordered pair of a lower set 𝑙 and an upper set 𝑢 which is inhabited (𝑞Q𝑞𝑙 ∧ ∃𝑟Q𝑟𝑢), rounded (𝑞Q(𝑞𝑙 ↔ ∃𝑟Q(𝑞 <Q 𝑟𝑟𝑙)) and likewise for 𝑢), disjoint (𝑞Q¬ (𝑞𝑙𝑞𝑢)) and located (𝑞Q𝑟Q(𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢))). See HoTT for more discussion of those terms and different ways of defining Dedekind cuts.

(Note: This is a "temporary" definition used in the construction of complex numbers, and is intended to be used only by the construction.) (Contributed by Jim Kingdon, 25-Sep-2019.)

P = {⟨𝑙, 𝑢⟩ ∣ (((𝑙Q𝑢Q) ∧ (∃𝑞Q 𝑞𝑙 ∧ ∃𝑟Q 𝑟𝑢)) ∧ ((∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝑙𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢))))}
 
Definitiondf-i1p 7429* Define the positive real constant 1. This is a "temporary" set used in the construction of complex numbers and is intended to be used only by the construction. (Contributed by Jim Kingdon, 25-Sep-2019.)
1P = ⟨{𝑙𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}⟩
 
Definitiondf-iplp 7430* Define addition on positive reals. From Section 11.2.1 of [HoTT], p. (varies). We write this definition to closely resemble the definition in HoTT although some of the conditions are redundant (for example, 𝑟 ∈ (1st𝑥) implies 𝑟Q) and can be simplified as shown at genpdf 7470.

This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 26-Sep-2019.)

+P = (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}⟩)
 
Definitiondf-imp 7431* Define multiplication on positive reals. Here we use a simple definition which is similar to df-iplp 7430 or the definition of multiplication on positive reals in Metamath Proof Explorer. This is as opposed to the more complicated definition of multiplication given in Section 11.2.1 of [HoTT], p. (varies), which appears to be motivated by handling negative numbers or handling modified Dedekind cuts in which locatedness is omitted.

This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 29-Sep-2019.)

·P = (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}⟩)
 
Definitiondf-iltp 7432* Define ordering on positive reals. We define 𝑥<P 𝑦 if there is a positive fraction 𝑞 which is an element of the upper cut of 𝑥 and the lower cut of 𝑦. From the definition of < in Section 11.2.1 of [HoTT], p. (varies).

This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 29-Sep-2019.)

<P = {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)))}
 
Theoremnpsspw 7433 Lemma for proving existence of reals. (Contributed by Jim Kingdon, 27-Sep-2019.)
P ⊆ (𝒫 Q × 𝒫 Q)
 
Theorempreqlu 7434 Two reals are equal if and only if their lower and upper cuts are. (Contributed by Jim Kingdon, 11-Dec-2019.)
((𝐴P𝐵P) → (𝐴 = 𝐵 ↔ ((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵))))
 
Theoremnpex 7435 The class of positive reals is a set. (Contributed by NM, 31-Oct-1995.)
P ∈ V
 
Theoremelinp 7436* Membership in positive reals. (Contributed by Jim Kingdon, 27-Sep-2019.)
(⟨𝐿, 𝑈⟩ ∈ P ↔ (((𝐿Q𝑈Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))))
 
Theoremprop 7437 A positive real is an ordered pair of a lower cut and an upper cut. (Contributed by Jim Kingdon, 27-Sep-2019.)
(𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
 
Theoremelnp1st2nd 7438* Membership in positive reals, using 1st and 2nd to refer to the lower and upper cut. (Contributed by Jim Kingdon, 3-Oct-2019.)
(𝐴P ↔ ((𝐴 ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞Q 𝑞 ∈ (1st𝐴) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐴))) ∧ ((∀𝑞Q (𝑞 ∈ (1st𝐴) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐴))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐴) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐴)))) ∧ ∀𝑞Q ¬ (𝑞 ∈ (1st𝐴) ∧ 𝑞 ∈ (2nd𝐴)) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐴) ∨ 𝑟 ∈ (2nd𝐴))))))
 
Theoremprml 7439* A positive real's lower cut is inhabited. (Contributed by Jim Kingdon, 27-Sep-2019.)
(⟨𝐿, 𝑈⟩ ∈ P → ∃𝑥Q 𝑥𝐿)
 
Theoremprmu 7440* A positive real's upper cut is inhabited. (Contributed by Jim Kingdon, 27-Sep-2019.)
(⟨𝐿, 𝑈⟩ ∈ P → ∃𝑥Q 𝑥𝑈)
 
Theoremprssnql 7441 The lower cut of a positive real is a subset of the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.)
(⟨𝐿, 𝑈⟩ ∈ P𝐿Q)
 
Theoremprssnqu 7442 The upper cut of a positive real is a subset of the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.)
(⟨𝐿, 𝑈⟩ ∈ P𝑈Q)
 
Theoremelprnql 7443 An element of a positive real's lower cut is a positive fraction. (Contributed by Jim Kingdon, 28-Sep-2019.)
((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → 𝐵Q)
 
Theoremelprnqu 7444 An element of a positive real's upper cut is a positive fraction. (Contributed by Jim Kingdon, 28-Sep-2019.)
((⟨𝐿, 𝑈⟩ ∈ P𝐵𝑈) → 𝐵Q)
 
Theorem0npr 7445 The empty set is not a positive real. (Contributed by NM, 15-Nov-1995.)
¬ ∅ ∈ P
 
Theoremprcdnql 7446 A lower cut is closed downwards under the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.)
((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → (𝐶 <Q 𝐵𝐶𝐿))
 
Theoremprcunqu 7447 An upper cut is closed upwards under the positive fractions. (Contributed by Jim Kingdon, 25-Nov-2019.)
((⟨𝐿, 𝑈⟩ ∈ P𝐶𝑈) → (𝐶 <Q 𝐵𝐵𝑈))
 
Theoremprubl 7448 A positive fraction not in a lower cut is an upper bound. (Contributed by Jim Kingdon, 29-Sep-2019.)
(((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) ∧ 𝐶Q) → (¬ 𝐶𝐿𝐵 <Q 𝐶))
 
Theoremprltlu 7449 An element of a lower cut is less than an element of the corresponding upper cut. (Contributed by Jim Kingdon, 15-Oct-2019.)
((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿𝐶𝑈) → 𝐵 <Q 𝐶)
 
Theoremprnmaxl 7450* A lower cut has no largest member. (Contributed by Jim Kingdon, 29-Sep-2019.)
((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → ∃𝑥𝐿 𝐵 <Q 𝑥)
 
Theoremprnminu 7451* An upper cut has no smallest member. (Contributed by Jim Kingdon, 7-Nov-2019.)
((⟨𝐿, 𝑈⟩ ∈ P𝐵𝑈) → ∃𝑥𝑈 𝑥 <Q 𝐵)
 
Theoremprnmaddl 7452* A lower cut has no largest member. Addition version. (Contributed by Jim Kingdon, 29-Sep-2019.)
((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) → ∃𝑥Q (𝐵 +Q 𝑥) ∈ 𝐿)
 
Theoremprloc 7453 A Dedekind cut is located. (Contributed by Jim Kingdon, 23-Oct-2019.)
((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → (𝐴𝐿𝐵𝑈))
 
Theoremprdisj 7454 A Dedekind cut is disjoint. (Contributed by Jim Kingdon, 15-Dec-2019.)
((⟨𝐿, 𝑈⟩ ∈ P𝐴Q) → ¬ (𝐴𝐿𝐴𝑈))
 
Theoremprarloclemlt 7455 Two possible ways of contracting an interval which straddles a Dedekind cut. Lemma for prarloc 7465. (Contributed by Jim Kingdon, 10-Nov-2019.)
(((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) <Q (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)))
 
Theoremprarloclemlo 7456* Contracting the lower side of an interval which straddles a Dedekind cut. Lemma for prarloc 7465. (Contributed by Jim Kingdon, 10-Nov-2019.)
(((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ((𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝐿 → (((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
 
Theoremprarloclemup 7457 Contracting the upper side of an interval which straddles a Dedekind cut. Lemma for prarloc 7465. (Contributed by Jim Kingdon, 10-Nov-2019.)
(((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ((𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈 → (((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
 
Theoremprarloclem3step 7458* Induction step for prarloclem3 7459. (Contributed by Jim Kingdon, 9-Nov-2019.)
(((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
 
Theoremprarloclem3 7459* Contracting an interval which straddles a Dedekind cut. Lemma for prarloc 7465. (Contributed by Jim Kingdon, 27-Oct-2019.)
(((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑋 ∈ ω ∧ 𝑃Q) ∧ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
 
Theoremprarloclem4 7460* A slight rearrangement of prarloclem3 7459. Lemma for prarloc 7465. (Contributed by Jim Kingdon, 4-Nov-2019.)
(((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ 𝑃Q) → (∃𝑥 ∈ ω ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
 
Theoremprarloclemn 7461* Subtracting two from a positive integer. Lemma for prarloc 7465. (Contributed by Jim Kingdon, 5-Nov-2019.)
((𝑁N ∧ 1o <N 𝑁) → ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁)
 
Theoremprarloclem5 7462* A substitution of zero for 𝑦 and 𝑁 minus two for 𝑥. Lemma for prarloc 7465. (Contributed by Jim Kingdon, 4-Nov-2019.)
(((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑥 ∈ ω ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑥), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
 
Theoremprarloclem 7463* A special case of Lemma 6.16 from [BauerTaylor], p. 32. Given evenly spaced rational numbers from 𝐴 to 𝐴 +Q (𝑁 ·Q 𝑃) (which are in the lower and upper cuts, respectively, of a real number), there are a pair of numbers, two positions apart in the even spacing, which straddle the cut. (Contributed by Jim Kingdon, 22-Oct-2019.)
(((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) ∧ (𝑁N𝑃Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([⟨𝑁, 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([⟨𝑗, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(𝑗 +o 2o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
 
Theoremprarloclemcalc 7464 Some calculations for prarloc 7465. (Contributed by Jim Kingdon, 26-Oct-2019.)
(((𝐴 = (𝑋 +Q0 ([⟨𝑀, 1o⟩] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([⟨(𝑀 +o 2o), 1o⟩] ~Q ·Q 𝑄))) ∧ ((𝑄Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋Q𝑀 ∈ ω))) → 𝐵 <Q (𝐴 +Q 𝑃))
 
Theoremprarloc 7465* A Dedekind cut is arithmetically located. Part of Proposition 11.15 of [BauerTaylor], p. 52, slightly modified. It states that given a tolerance 𝑃, there are elements of the lower and upper cut which are within that tolerance of each other.

Usually, proofs will be shorter if they use prarloc2 7466 instead. (Contributed by Jim Kingdon, 22-Oct-2019.)

((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑎𝐿𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃))
 
Theoremprarloc2 7466* A Dedekind cut is arithmetically located. This is a variation of prarloc 7465 which only constructs one (named) point and is therefore often easier to work with. It states that given a tolerance 𝑃, there are elements of the lower and upper cut which are exactly that tolerance from each other. (Contributed by Jim Kingdon, 26-Dec-2019.)
((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑎𝐿 (𝑎 +Q 𝑃) ∈ 𝑈)
 
Theoremltrelpr 7467 Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.)
<P ⊆ (P × P)
 
Theoremltdfpr 7468* More convenient form of df-iltp 7432. (Contributed by Jim Kingdon, 15-Dec-2019.)
((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ ∃𝑞Q (𝑞 ∈ (2nd𝐴) ∧ 𝑞 ∈ (1st𝐵))))
 
Theoremgenpdflem 7469* Simplification of upper or lower cut expression. Lemma for genpdf 7470. (Contributed by Jim Kingdon, 30-Sep-2019.)
((𝜑𝑟𝐴) → 𝑟Q)    &   ((𝜑𝑠𝐵) → 𝑠Q)       (𝜑 → {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟𝐴𝑠𝐵𝑞 = (𝑟𝐺𝑠))} = {𝑞Q ∣ ∃𝑟𝐴𝑠𝐵 𝑞 = (𝑟𝐺𝑠)})
 
Theoremgenpdf 7470* Simplified definition of addition or multiplication on positive reals. (Contributed by Jim Kingdon, 30-Sep-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑤) ∧ 𝑠 ∈ (1st𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑤) ∧ 𝑠 ∈ (2nd𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}⟩)       𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑞Q ∣ ∃𝑟 ∈ (1st𝑤)∃𝑠 ∈ (1st𝑣)𝑞 = (𝑟𝐺𝑠)}, {𝑞Q ∣ ∃𝑟 ∈ (2nd𝑤)∃𝑠 ∈ (2nd𝑣)𝑞 = (𝑟𝐺𝑠)}⟩)
 
Theoremgenipv 7471* Value of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingon, 3-Oct-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)       ((𝐴P𝐵P) → (𝐴𝐹𝐵) = ⟨{𝑞Q ∣ ∃𝑟 ∈ (1st𝐴)∃𝑠 ∈ (1st𝐵)𝑞 = (𝑟𝐺𝑠)}, {𝑞Q ∣ ∃𝑟 ∈ (2nd𝐴)∃𝑠 ∈ (2nd𝐵)𝑞 = (𝑟𝐺𝑠)}⟩)
 
Theoremgenplt2i 7472* Operating on both sides of two inequalities, when the operation is consistent with <Q. (Contributed by Jim Kingdon, 6-Oct-2019.)
((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))    &   ((𝑥Q𝑦Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))       ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐷))
 
Theoremgenpelxp 7473* Set containing the result of adding or multiplying positive reals. (Contributed by Jim Kingdon, 5-Dec-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)       ((𝐴P𝐵P) → (𝐴𝐹𝐵) ∈ (𝒫 Q × 𝒫 Q))
 
Theoremgenpelvl 7474* Membership in lower cut of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingdon, 2-Oct-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)       ((𝐴P𝐵P) → (𝐶 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (1st𝐴)∃ ∈ (1st𝐵)𝐶 = (𝑔𝐺)))
 
Theoremgenpelvu 7475* Membership in upper cut of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingdon, 15-Oct-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)       ((𝐴P𝐵P) → (𝐶 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (2nd𝐴)∃ ∈ (2nd𝐵)𝐶 = (𝑔𝐺)))
 
Theoremgenpprecll 7476* Pre-closure law for general operation on lower cuts. (Contributed by Jim Kingdon, 2-Oct-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)       ((𝐴P𝐵P) → ((𝐶 ∈ (1st𝐴) ∧ 𝐷 ∈ (1st𝐵)) → (𝐶𝐺𝐷) ∈ (1st ‘(𝐴𝐹𝐵))))
 
Theoremgenppreclu 7477* Pre-closure law for general operation on upper cuts. (Contributed by Jim Kingdon, 7-Nov-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)       ((𝐴P𝐵P) → ((𝐶 ∈ (2nd𝐴) ∧ 𝐷 ∈ (2nd𝐵)) → (𝐶𝐺𝐷) ∈ (2nd ‘(𝐴𝐹𝐵))))
 
Theoremgenipdm 7478* Domain of general operation on positive reals. (Contributed by Jim Kingdon, 2-Oct-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)       dom 𝐹 = (P × P)
 
Theoremgenpml 7479* The lower cut produced by addition or multiplication on positive reals is inhabited. (Contributed by Jim Kingdon, 5-Oct-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)       ((𝐴P𝐵P) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))
 
Theoremgenpmu 7480* The upper cut produced by addition or multiplication on positive reals is inhabited. (Contributed by Jim Kingdon, 5-Dec-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)       ((𝐴P𝐵P) → ∃𝑞Q 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))
 
Theoremgenpcdl 7481* Downward closure of an operation on positive reals. (Contributed by Jim Kingdon, 14-Oct-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)    &   ((((𝐴P𝑔 ∈ (1st𝐴)) ∧ (𝐵P ∈ (1st𝐵))) ∧ 𝑥Q) → (𝑥 <Q (𝑔𝐺) → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵))))       ((𝐴P𝐵P) → (𝑓 ∈ (1st ‘(𝐴𝐹𝐵)) → (𝑥 <Q 𝑓𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))))
 
Theoremgenpcuu 7482* Upward closure of an operation on positive reals. (Contributed by Jim Kingdon, 8-Nov-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)    &   ((((𝐴P𝑔 ∈ (2nd𝐴)) ∧ (𝐵P ∈ (2nd𝐵))) ∧ 𝑥Q) → ((𝑔𝐺) <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))       ((𝐴P𝐵P) → (𝑓 ∈ (2nd ‘(𝐴𝐹𝐵)) → (𝑓 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵)))))
 
Theoremgenprndl 7483* The lower cut produced by addition or multiplication on positive reals is rounded. (Contributed by Jim Kingdon, 7-Oct-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)    &   ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))    &   ((𝑥Q𝑦Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))    &   ((((𝐴P𝑔 ∈ (1st𝐴)) ∧ (𝐵P ∈ (1st𝐵))) ∧ 𝑥Q) → (𝑥 <Q (𝑔𝐺) → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵))))       ((𝐴P𝐵P) → ∀𝑞Q (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴𝐹𝐵)))))
 
Theoremgenprndu 7484* The upper cut produced by addition or multiplication on positive reals is rounded. (Contributed by Jim Kingdon, 7-Oct-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)    &   ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))    &   ((𝑥Q𝑦Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))    &   ((((𝐴P𝑔 ∈ (2nd𝐴)) ∧ (𝐵P ∈ (2nd𝐵))) ∧ 𝑥Q) → ((𝑔𝐺) <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))       ((𝐴P𝐵P) → ∀𝑟Q (𝑟 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))))
 
Theoremgenpdisj 7485* The lower and upper cuts produced by addition or multiplication on positive reals are disjoint. (Contributed by Jim Kingdon, 15-Oct-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)    &   ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))    &   ((𝑥Q𝑦Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))       ((𝐴P𝐵P) → ∀𝑞Q ¬ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))))
 
Theoremgenpassl 7486* Associativity of lower cuts. Lemma for genpassg 7488. (Contributed by Jim Kingdon, 11-Dec-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)    &   dom 𝐹 = (P × P)    &   ((𝑓P𝑔P) → (𝑓𝐹𝑔) ∈ P)    &   ((𝑓Q𝑔QQ) → ((𝑓𝐺𝑔)𝐺) = (𝑓𝐺(𝑔𝐺)))       ((𝐴P𝐵P𝐶P) → (1st ‘((𝐴𝐹𝐵)𝐹𝐶)) = (1st ‘(𝐴𝐹(𝐵𝐹𝐶))))
 
Theoremgenpassu 7487* Associativity of upper cuts. Lemma for genpassg 7488. (Contributed by Jim Kingdon, 11-Dec-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)    &   dom 𝐹 = (P × P)    &   ((𝑓P𝑔P) → (𝑓𝐹𝑔) ∈ P)    &   ((𝑓Q𝑔QQ) → ((𝑓𝐺𝑔)𝐺) = (𝑓𝐺(𝑔𝐺)))       ((𝐴P𝐵P𝐶P) → (2nd ‘((𝐴𝐹𝐵)𝐹𝐶)) = (2nd ‘(𝐴𝐹(𝐵𝐹𝐶))))
 
Theoremgenpassg 7488* Associativity of an operation on reals. (Contributed by Jim Kingdon, 11-Dec-2019.)
𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)    &   ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)    &   dom 𝐹 = (P × P)    &   ((𝑓P𝑔P) → (𝑓𝐹𝑔) ∈ P)    &   ((𝑓Q𝑔QQ) → ((𝑓𝐺𝑔)𝐺) = (𝑓𝐺(𝑔𝐺)))       ((𝐴P𝐵P𝐶P) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)))
 
Theoremaddnqprllem 7489 Lemma to prove downward closure in positive real addition. (Contributed by Jim Kingdon, 7-Dec-2019.)
(((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) → (𝑋 <Q 𝑆 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝐿))
 
Theoremaddnqprulem 7490 Lemma to prove upward closure in positive real addition. (Contributed by Jim Kingdon, 7-Dec-2019.)
(((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) → (𝑆 <Q 𝑋 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝑈))
 
Theoremaddnqprl 7491 Lemma to prove downward closure in positive real addition. (Contributed by Jim Kingdon, 5-Dec-2019.)
((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 <Q (𝐺 +Q 𝐻) → 𝑋 ∈ (1st ‘(𝐴 +P 𝐵))))
 
Theoremaddnqpru 7492 Lemma to prove upward closure in positive real addition. (Contributed by Jim Kingdon, 5-Dec-2019.)
((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) <Q 𝑋𝑋 ∈ (2nd ‘(𝐴 +P 𝐵))))
 
Theoremaddlocprlemlt 7493 Lemma for addlocpr 7498. The 𝑄 <Q (𝐷 +Q 𝐸) case. (Contributed by Jim Kingdon, 6-Dec-2019.)
(𝜑𝐴P)    &   (𝜑𝐵P)    &   (𝜑𝑄 <Q 𝑅)    &   (𝜑𝑃Q)    &   (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅)    &   (𝜑𝐷 ∈ (1st𝐴))    &   (𝜑𝑈 ∈ (2nd𝐴))    &   (𝜑𝑈 <Q (𝐷 +Q 𝑃))    &   (𝜑𝐸 ∈ (1st𝐵))    &   (𝜑𝑇 ∈ (2nd𝐵))    &   (𝜑𝑇 <Q (𝐸 +Q 𝑃))       (𝜑 → (𝑄 <Q (𝐷 +Q 𝐸) → 𝑄 ∈ (1st ‘(𝐴 +P 𝐵))))
 
Theoremaddlocprlemeqgt 7494 Lemma for addlocpr 7498. This is a step used in both the 𝑄 = (𝐷 +Q 𝐸) and (𝐷 +Q 𝐸) <Q 𝑄 cases. (Contributed by Jim Kingdon, 7-Dec-2019.)
(𝜑𝐴P)    &   (𝜑𝐵P)    &   (𝜑𝑄 <Q 𝑅)    &   (𝜑𝑃Q)    &   (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅)    &   (𝜑𝐷 ∈ (1st𝐴))    &   (𝜑𝑈 ∈ (2nd𝐴))    &   (𝜑𝑈 <Q (𝐷 +Q 𝑃))    &   (𝜑𝐸 ∈ (1st𝐵))    &   (𝜑𝑇 ∈ (2nd𝐵))    &   (𝜑𝑇 <Q (𝐸 +Q 𝑃))       (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))
 
Theoremaddlocprlemeq 7495 Lemma for addlocpr 7498. The 𝑄 = (𝐷 +Q 𝐸) case. (Contributed by Jim Kingdon, 6-Dec-2019.)
(𝜑𝐴P)    &   (𝜑𝐵P)    &   (𝜑𝑄 <Q 𝑅)    &   (𝜑𝑃Q)    &   (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅)    &   (𝜑𝐷 ∈ (1st𝐴))    &   (𝜑𝑈 ∈ (2nd𝐴))    &   (𝜑𝑈 <Q (𝐷 +Q 𝑃))    &   (𝜑𝐸 ∈ (1st𝐵))    &   (𝜑𝑇 ∈ (2nd𝐵))    &   (𝜑𝑇 <Q (𝐸 +Q 𝑃))       (𝜑 → (𝑄 = (𝐷 +Q 𝐸) → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))
 
Theoremaddlocprlemgt 7496 Lemma for addlocpr 7498. The (𝐷 +Q 𝐸) <Q 𝑄 case. (Contributed by Jim Kingdon, 6-Dec-2019.)
(𝜑𝐴P)    &   (𝜑𝐵P)    &   (𝜑𝑄 <Q 𝑅)    &   (𝜑𝑃Q)    &   (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅)    &   (𝜑𝐷 ∈ (1st𝐴))    &   (𝜑𝑈 ∈ (2nd𝐴))    &   (𝜑𝑈 <Q (𝐷 +Q 𝑃))    &   (𝜑𝐸 ∈ (1st𝐵))    &   (𝜑𝑇 ∈ (2nd𝐵))    &   (𝜑𝑇 <Q (𝐸 +Q 𝑃))       (𝜑 → ((𝐷 +Q 𝐸) <Q 𝑄𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))
 
Theoremaddlocprlem 7497 Lemma for addlocpr 7498. The result, in deduction form. (Contributed by Jim Kingdon, 6-Dec-2019.)
(𝜑𝐴P)    &   (𝜑𝐵P)    &   (𝜑𝑄 <Q 𝑅)    &   (𝜑𝑃Q)    &   (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅)    &   (𝜑𝐷 ∈ (1st𝐴))    &   (𝜑𝑈 ∈ (2nd𝐴))    &   (𝜑𝑈 <Q (𝐷 +Q 𝑃))    &   (𝜑𝐸 ∈ (1st𝐵))    &   (𝜑𝑇 ∈ (2nd𝐵))    &   (𝜑𝑇 <Q (𝐸 +Q 𝑃))       (𝜑 → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))
 
Theoremaddlocpr 7498* Locatedness of addition on positive reals. Lemma 11.16 in [BauerTaylor], p. 53. The proof in BauerTaylor relies on signed rationals, so we replace it with another proof which applies prarloc 7465 to both 𝐴 and 𝐵, and uses nqtri3or 7358 rather than prloc 7453 to decide whether 𝑞 is too big to be in the lower cut of 𝐴 +P 𝐵 (and deduce that if it is, then 𝑟 must be in the upper cut). What the two proofs have in common is that they take the difference between 𝑞 and 𝑟 to determine how tight a range they need around the real numbers. (Contributed by Jim Kingdon, 5-Dec-2019.)
((𝐴P𝐵P) → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))))
 
Theoremaddclpr 7499 Closure of addition on positive reals. First statement of Proposition 9-3.5 of [Gleason] p. 123. Combination of Lemma 11.13 and Lemma 11.16 in [BauerTaylor], p. 53. (Contributed by NM, 13-Mar-1996.)
((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)
 
Theoremplpvlu 7500* Value of addition on positive reals. (Contributed by Jim Kingdon, 8-Dec-2019.)
((𝐴P𝐵P) → (𝐴 +P 𝐵) = ⟨{𝑥Q ∣ ∃𝑦 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐵)𝑥 = (𝑦 +Q 𝑧)}, {𝑥Q ∣ ∃𝑦 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐵)𝑥 = (𝑦 +Q 𝑧)}⟩)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >