![]() |
Intuitionistic Logic Explorer Theorem List (p. 75 of 129) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | caucvgprprlemnkj 7401* | Lemma for caucvgprpr 7421. Part of disjointness. (Contributed by Jim Kingdon, 20-Jan-2021.) |
⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → 𝐾 ∈ N) & ⊢ (𝜑 → 𝐽 ∈ N) & ⊢ (𝜑 → 𝑆 ∈ Q) ⇒ ⊢ (𝜑 → ¬ (〈{𝑝 ∣ 𝑝 <Q (𝑆 +Q (*Q‘[〈𝐾, 1o〉] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[〈𝐾, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝐾) ∧ ((𝐹‘𝐽) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝐽, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑆}, {𝑞 ∣ 𝑆 <Q 𝑞}〉)) | ||
Theorem | caucvgprprlemnbj 7402* | Lemma for caucvgprpr 7421. Non-existence of two elements of the sequence which are too far from each other. (Contributed by Jim Kingdon, 17-Jun-2021.) |
⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → 𝐵 ∈ N) & ⊢ (𝜑 → 𝐽 ∈ N) ⇒ ⊢ (𝜑 → ¬ (((𝐹‘𝐵) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝐵, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝐵, 1o〉] ~Q ) <Q 𝑢}〉) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝐽, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑢}〉)<P (𝐹‘𝐽)) | ||
Theorem | caucvgprprlemml 7403* | Lemma for caucvgprpr 7421. The lower cut of the putative limit is inhabited. (Contributed by Jim Kingdon, 29-Dec-2020.) |
⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ (𝜑 → ∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝐿)) | ||
Theorem | caucvgprprlemmu 7404* | Lemma for caucvgprpr 7421. The upper cut of the putative limit is inhabited. (Contributed by Jim Kingdon, 29-Dec-2020.) |
⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ (𝜑 → ∃𝑡 ∈ Q 𝑡 ∈ (2nd ‘𝐿)) | ||
Theorem | caucvgprprlemm 7405* | Lemma for caucvgprpr 7421. The putative limit is inhabited. (Contributed by Jim Kingdon, 21-Dec-2020.) |
⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ (𝜑 → (∃𝑠 ∈ Q 𝑠 ∈ (1st ‘𝐿) ∧ ∃𝑡 ∈ Q 𝑡 ∈ (2nd ‘𝐿))) | ||
Theorem | caucvgprprlemopl 7406* | Lemma for caucvgprpr 7421. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 21-Dec-2020.) |
⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ ((𝜑 ∧ 𝑠 ∈ (1st ‘𝐿)) → ∃𝑡 ∈ Q (𝑠 <Q 𝑡 ∧ 𝑡 ∈ (1st ‘𝐿))) | ||
Theorem | caucvgprprlemlol 7407* | Lemma for caucvgprpr 7421. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 21-Dec-2020.) |
⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ ((𝜑 ∧ 𝑠 <Q 𝑡 ∧ 𝑡 ∈ (1st ‘𝐿)) → 𝑠 ∈ (1st ‘𝐿)) | ||
Theorem | caucvgprprlemopu 7408* | Lemma for caucvgprpr 7421. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 21-Dec-2020.) |
⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ ((𝜑 ∧ 𝑡 ∈ (2nd ‘𝐿)) → ∃𝑠 ∈ Q (𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿))) | ||
Theorem | caucvgprprlemupu 7409* | Lemma for caucvgprpr 7421. The upper cut of the putative limit is upper. (Contributed by Jim Kingdon, 21-Dec-2020.) |
⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ ((𝜑 ∧ 𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿)) → 𝑡 ∈ (2nd ‘𝐿)) | ||
Theorem | caucvgprprlemrnd 7410* | Lemma for caucvgprpr 7421. The putative limit is rounded. (Contributed by Jim Kingdon, 21-Dec-2020.) |
⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ (𝜑 → (∀𝑠 ∈ Q (𝑠 ∈ (1st ‘𝐿) ↔ ∃𝑡 ∈ Q (𝑠 <Q 𝑡 ∧ 𝑡 ∈ (1st ‘𝐿))) ∧ ∀𝑡 ∈ Q (𝑡 ∈ (2nd ‘𝐿) ↔ ∃𝑠 ∈ Q (𝑠 <Q 𝑡 ∧ 𝑠 ∈ (2nd ‘𝐿))))) | ||
Theorem | caucvgprprlemdisj 7411* | Lemma for caucvgprpr 7421. The putative limit is disjoint. (Contributed by Jim Kingdon, 21-Dec-2020.) |
⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ (𝜑 → ∀𝑠 ∈ Q ¬ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) | ||
Theorem | caucvgprprlemloc 7412* | Lemma for caucvgprpr 7421. The putative limit is located. (Contributed by Jim Kingdon, 21-Dec-2020.) |
⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ (𝜑 → ∀𝑠 ∈ Q ∀𝑡 ∈ Q (𝑠 <Q 𝑡 → (𝑠 ∈ (1st ‘𝐿) ∨ 𝑡 ∈ (2nd ‘𝐿)))) | ||
Theorem | caucvgprprlemcl 7413* | Lemma for caucvgprpr 7421. The putative limit is a positive real. (Contributed by Jim Kingdon, 21-Nov-2020.) |
⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ (𝜑 → 𝐿 ∈ P) | ||
Theorem | caucvgprprlemclphr 7414* | Lemma for caucvgprpr 7421. The putative limit is a positive real. Like caucvgprprlemcl 7413 but without a distinct variable constraint between 𝜑 and 𝑟. (Contributed by Jim Kingdon, 19-Jun-2021.) |
⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ (𝜑 → 𝐿 ∈ P) | ||
Theorem | caucvgprprlemexbt 7415* | Lemma for caucvgprpr 7421. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 16-Jun-2021.) |
⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 & ⊢ (𝜑 → 𝑄 ∈ Q) & ⊢ (𝜑 → 𝑇 ∈ P) & ⊢ (𝜑 → (𝐿 +P 〈{𝑝 ∣ 𝑝 <Q 𝑄}, {𝑞 ∣ 𝑄 <Q 𝑞}〉)<P 𝑇) ⇒ ⊢ (𝜑 → ∃𝑏 ∈ N (((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉) +P 〈{𝑝 ∣ 𝑝 <Q 𝑄}, {𝑞 ∣ 𝑄 <Q 𝑞}〉)<P 𝑇) | ||
Theorem | caucvgprprlemexb 7416* | Lemma for caucvgprpr 7421. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 15-Jun-2021.) |
⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 & ⊢ (𝜑 → 𝑄 ∈ P) & ⊢ (𝜑 → 𝑅 ∈ N) ⇒ ⊢ (𝜑 → (((𝐿 +P 𝑄) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑅, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑅, 1o〉] ~Q ) <Q 𝑞}〉)<P ((𝐹‘𝑅) +P 𝑄) → ∃𝑏 ∈ N (((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑏, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑏, 1o〉] ~Q ) <Q 𝑞}〉) +P (𝑄 +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑅, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑅, 1o〉] ~Q ) <Q 𝑞}〉))<P ((𝐹‘𝑅) +P 𝑄))) | ||
Theorem | caucvgprprlemaddq 7417* | Lemma for caucvgprpr 7421. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 5-Jun-2021.) |
⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 & ⊢ (𝜑 → 𝑋 ∈ P) & ⊢ (𝜑 → 𝑄 ∈ P) & ⊢ (𝜑 → ∃𝑟 ∈ N (𝑋 +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P ((𝐹‘𝑟) +P 𝑄)) ⇒ ⊢ (𝜑 → 𝑋<P (𝐿 +P 𝑄)) | ||
Theorem | caucvgprprlem1 7418* | Lemma for caucvgprpr 7421. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 25-Nov-2020.) |
⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 & ⊢ (𝜑 → 𝑄 ∈ P) & ⊢ (𝜑 → 𝐽 <N 𝐾) & ⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝐽, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑢}〉<P 𝑄) ⇒ ⊢ (𝜑 → (𝐹‘𝐾)<P (𝐿 +P 𝑄)) | ||
Theorem | caucvgprprlem2 7419* | Lemma for caucvgprpr 7421. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 25-Nov-2020.) |
⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 & ⊢ (𝜑 → 𝑄 ∈ P) & ⊢ (𝜑 → 𝐽 <N 𝐾) & ⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝐽, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑢}〉<P 𝑄) ⇒ ⊢ (𝜑 → 𝐿<P ((𝐹‘𝐾) +P 𝑄)) | ||
Theorem | caucvgprprlemlim 7420* | Lemma for caucvgprpr 7421. The putative limit is a limit. (Contributed by Jim Kingdon, 21-Nov-2020.) |
⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) & ⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[〈𝑟, 1o〉] ~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q (*Q‘[〈𝑟, 1o〉] ~Q )}, {𝑞 ∣ (*Q‘[〈𝑟, 1o〉] ~Q ) <Q 𝑞}〉)<P 〈{𝑝 ∣ 𝑝 <Q 𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 ⇒ ⊢ (𝜑 → ∀𝑥 ∈ P ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → ((𝐹‘𝑘)<P (𝐿 +P 𝑥) ∧ 𝐿<P ((𝐹‘𝑘) +P 𝑥)))) | ||
Theorem | caucvgprpr 7421* |
A Cauchy sequence of positive reals with a modulus of convergence
converges to a positive real. This is basically Corollary 11.2.13 of
[HoTT], p. (varies) (one key difference
being that this is for
positive reals rather than signed reals). Also, the HoTT book theorem
has a modulus of convergence (that is, a rate of convergence)
specified by (11.2.9) in HoTT whereas this theorem fixes the rate of
convergence to say that all terms after the nth term must be within
1 / 𝑛 of the nth term (it should later be
able to prove versions
of this theorem with a different fixed rate or a modulus of
convergence supplied as a hypothesis). We also specify that every
term needs to be larger than a given value 𝐴, to avoid the case
where we have positive terms which "converge" to zero (which
is not a
positive real).
This is similar to caucvgpr 7391 except that values of the sequence are positive reals rather than positive fractions. Reading that proof first (or cauappcvgpr 7371) might help in understanding this one, as they are slightly simpler but similarly structured. (Contributed by Jim Kingdon, 14-Nov-2020.) |
⊢ (𝜑 → 𝐹:N⟶P) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴<P (𝐹‘𝑚)) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ P ∀𝑥 ∈ P ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → ((𝐹‘𝑘)<P (𝑦 +P 𝑥) ∧ 𝑦<P ((𝐹‘𝑘) +P 𝑥)))) | ||
Definition | df-enr 7422* | Define equivalence relation for signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.1 of [Gleason] p. 126. (Contributed by NM, 25-Jul-1995.) |
⊢ ~R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} | ||
Definition | df-nr 7423 | Define class of signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 25-Jul-1995.) |
⊢ R = ((P × P) / ~R ) | ||
Definition | df-plr 7424* | Define addition on signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 25-Aug-1995.) |
⊢ +R = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧ 𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧ 𝑧 = [〈(𝑤 +P 𝑢), (𝑣 +P 𝑓)〉] ~R ))} | ||
Definition | df-mr 7425* | Define multiplication on signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 25-Aug-1995.) |
⊢ ·R = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧ 𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧ 𝑧 = [〈((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑓)), ((𝑤 ·P 𝑓) +P (𝑣 ·P 𝑢))〉] ~R ))} | ||
Definition | df-ltr 7426* | Define ordering relation on signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.4 of [Gleason] p. 127. (Contributed by NM, 14-Feb-1996.) |
⊢ <R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧ 𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))} | ||
Definition | df-0r 7427 | Define signed real constant 0. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 9-Aug-1995.) |
⊢ 0R = [〈1P, 1P〉] ~R | ||
Definition | df-1r 7428 | Define signed real constant 1. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 9-Aug-1995.) |
⊢ 1R = [〈(1P +P 1P), 1P〉] ~R | ||
Definition | df-m1r 7429 | Define signed real constant -1. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 9-Aug-1995.) |
⊢ -1R = [〈1P, (1P +P 1P)〉] ~R | ||
Theorem | enrbreq 7430 | Equivalence relation for signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) |
⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → (〈𝐴, 𝐵〉 ~R 〈𝐶, 𝐷〉 ↔ (𝐴 +P 𝐷) = (𝐵 +P 𝐶))) | ||
Theorem | enrer 7431 | The equivalence relation for signed reals is an equivalence relation. Proposition 9-4.1 of [Gleason] p. 126. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) |
⊢ ~R Er (P × P) | ||
Theorem | enreceq 7432 | Equivalence class equality of positive fractions in terms of positive integers. (Contributed by NM, 29-Nov-1995.) |
⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ([〈𝐴, 𝐵〉] ~R = [〈𝐶, 𝐷〉] ~R ↔ (𝐴 +P 𝐷) = (𝐵 +P 𝐶))) | ||
Theorem | enrex 7433 | The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995.) |
⊢ ~R ∈ V | ||
Theorem | ltrelsr 7434 | Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996.) |
⊢ <R ⊆ (R × R) | ||
Theorem | addcmpblnr 7435 | Lemma showing compatibility of addition. (Contributed by NM, 3-Sep-1995.) |
⊢ ((((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧ (𝑅 ∈ P ∧ 𝑆 ∈ P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → 〈(𝐴 +P 𝐹), (𝐵 +P 𝐺)〉 ~R 〈(𝐶 +P 𝑅), (𝐷 +P 𝑆)〉)) | ||
Theorem | mulcmpblnrlemg 7436 | Lemma used in lemma showing compatibility of multiplication. (Contributed by Jim Kingdon, 1-Jan-2020.) |
⊢ ((((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧ (𝑅 ∈ P ∧ 𝑆 ∈ P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))) | ||
Theorem | mulcmpblnr 7437 | Lemma showing compatibility of multiplication. (Contributed by NM, 5-Sep-1995.) |
⊢ ((((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧ (𝑅 ∈ P ∧ 𝑆 ∈ P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → 〈((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)), ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹))〉 ~R 〈((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)), ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))〉)) | ||
Theorem | prsrlem1 7438* | Decomposing signed reals into positive reals. Lemma for addsrpr 7441 and mulsrpr 7442. (Contributed by Jim Kingdon, 30-Dec-2019.) |
⊢ (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [〈𝑤, 𝑣〉] ~R ∧ 𝐵 = [〈𝑢, 𝑡〉] ~R ) ∧ (𝐴 = [〈𝑠, 𝑓〉] ~R ∧ 𝐵 = [〈𝑔, ℎ〉] ~R ))) → ((((𝑤 ∈ P ∧ 𝑣 ∈ P) ∧ (𝑠 ∈ P ∧ 𝑓 ∈ P)) ∧ ((𝑢 ∈ P ∧ 𝑡 ∈ P) ∧ (𝑔 ∈ P ∧ ℎ ∈ P))) ∧ ((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ℎ) = (𝑡 +P 𝑔)))) | ||
Theorem | addsrmo 7439* | There is at most one result from adding signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.) |
⊢ ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~R ∧ 𝐵 = [〈𝑢, 𝑡〉] ~R ) ∧ 𝑧 = [〈(𝑤 +P 𝑢), (𝑣 +P 𝑡)〉] ~R )) | ||
Theorem | mulsrmo 7440* | There is at most one result from multiplying signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.) |
⊢ ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~R ∧ 𝐵 = [〈𝑢, 𝑡〉] ~R ) ∧ 𝑧 = [〈((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))〉] ~R )) | ||
Theorem | addsrpr 7441 | Addition of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ([〈𝐴, 𝐵〉] ~R +R [〈𝐶, 𝐷〉] ~R ) = [〈(𝐴 +P 𝐶), (𝐵 +P 𝐷)〉] ~R ) | ||
Theorem | mulsrpr 7442 | Multiplication of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ([〈𝐴, 𝐵〉] ~R ·R [〈𝐶, 𝐷〉] ~R ) = [〈((𝐴 ·P 𝐶) +P (𝐵 ·P 𝐷)), ((𝐴 ·P 𝐷) +P (𝐵 ·P 𝐶))〉] ~R ) | ||
Theorem | ltsrprg 7443 | Ordering of signed reals in terms of positive reals. (Contributed by Jim Kingdon, 2-Jan-2019.) |
⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ([〈𝐴, 𝐵〉] ~R <R [〈𝐶, 𝐷〉] ~R ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶))) | ||
Theorem | gt0srpr 7444 | Greater than zero in terms of positive reals. (Contributed by NM, 13-May-1996.) |
⊢ (0R <R [〈𝐴, 𝐵〉] ~R ↔ 𝐵<P 𝐴) | ||
Theorem | 0nsr 7445 | The empty set is not a signed real. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) |
⊢ ¬ ∅ ∈ R | ||
Theorem | 0r 7446 | The constant 0R is a signed real. (Contributed by NM, 9-Aug-1995.) |
⊢ 0R ∈ R | ||
Theorem | 1sr 7447 | The constant 1R is a signed real. (Contributed by NM, 9-Aug-1995.) |
⊢ 1R ∈ R | ||
Theorem | m1r 7448 | The constant -1R is a signed real. (Contributed by NM, 9-Aug-1995.) |
⊢ -1R ∈ R | ||
Theorem | addclsr 7449 | Closure of addition on signed reals. (Contributed by NM, 25-Jul-1995.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 +R 𝐵) ∈ R) | ||
Theorem | mulclsr 7450 | Closure of multiplication on signed reals. (Contributed by NM, 10-Aug-1995.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) ∈ R) | ||
Theorem | addcomsrg 7451 | Addition of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 +R 𝐵) = (𝐵 +R 𝐴)) | ||
Theorem | addasssrg 7452 | Addition of signed reals is associative. (Contributed by Jim Kingdon, 3-Jan-2020.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R) → ((𝐴 +R 𝐵) +R 𝐶) = (𝐴 +R (𝐵 +R 𝐶))) | ||
Theorem | mulcomsrg 7453 | Multiplication of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴)) | ||
Theorem | mulasssrg 7454 | Multiplication of signed reals is associative. (Contributed by Jim Kingdon, 3-Jan-2020.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R) → ((𝐴 ·R 𝐵) ·R 𝐶) = (𝐴 ·R (𝐵 ·R 𝐶))) | ||
Theorem | distrsrg 7455 | Multiplication of signed reals is distributive. (Contributed by Jim Kingdon, 4-Jan-2020.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R) → (𝐴 ·R (𝐵 +R 𝐶)) = ((𝐴 ·R 𝐵) +R (𝐴 ·R 𝐶))) | ||
Theorem | m1p1sr 7456 | Minus one plus one is zero for signed reals. (Contributed by NM, 5-May-1996.) |
⊢ (-1R +R 1R) = 0R | ||
Theorem | m1m1sr 7457 | Minus one times minus one is plus one for signed reals. (Contributed by NM, 14-May-1996.) |
⊢ (-1R ·R -1R) = 1R | ||
Theorem | lttrsr 7458* | Signed real 'less than' is a transitive relation. (Contributed by Jim Kingdon, 4-Jan-2019.) |
⊢ ((𝑓 ∈ R ∧ 𝑔 ∈ R ∧ ℎ ∈ R) → ((𝑓 <R 𝑔 ∧ 𝑔 <R ℎ) → 𝑓 <R ℎ)) | ||
Theorem | ltposr 7459 | Signed real 'less than' is a partial order. (Contributed by Jim Kingdon, 4-Jan-2019.) |
⊢ <R Po R | ||
Theorem | ltsosr 7460 | Signed real 'less than' is a strict ordering. (Contributed by NM, 19-Feb-1996.) |
⊢ <R Or R | ||
Theorem | 0lt1sr 7461 | 0 is less than 1 for signed reals. (Contributed by NM, 26-Mar-1996.) |
⊢ 0R <R 1R | ||
Theorem | 1ne0sr 7462 | 1 and 0 are distinct for signed reals. (Contributed by NM, 26-Mar-1996.) |
⊢ ¬ 1R = 0R | ||
Theorem | 0idsr 7463 | The signed real number 0 is an identity element for addition of signed reals. (Contributed by NM, 10-Apr-1996.) |
⊢ (𝐴 ∈ R → (𝐴 +R 0R) = 𝐴) | ||
Theorem | 1idsr 7464 | 1 is an identity element for multiplication. (Contributed by Jim Kingdon, 5-Jan-2020.) |
⊢ (𝐴 ∈ R → (𝐴 ·R 1R) = 𝐴) | ||
Theorem | 00sr 7465 | A signed real times 0 is 0. (Contributed by NM, 10-Apr-1996.) |
⊢ (𝐴 ∈ R → (𝐴 ·R 0R) = 0R) | ||
Theorem | ltasrg 7466 | Ordering property of addition. (Contributed by NM, 10-May-1996.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R) → (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵))) | ||
Theorem | pn0sr 7467 | A signed real plus its negative is zero. (Contributed by NM, 14-May-1996.) |
⊢ (𝐴 ∈ R → (𝐴 +R (𝐴 ·R -1R)) = 0R) | ||
Theorem | negexsr 7468* | Existence of negative signed real. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 2-May-1996.) |
⊢ (𝐴 ∈ R → ∃𝑥 ∈ R (𝐴 +R 𝑥) = 0R) | ||
Theorem | recexgt0sr 7469* | The reciprocal of a positive signed real exists and is positive. (Contributed by Jim Kingdon, 6-Feb-2020.) |
⊢ (0R <R 𝐴 → ∃𝑥 ∈ R (0R <R 𝑥 ∧ (𝐴 ·R 𝑥) = 1R)) | ||
Theorem | recexsrlem 7470* | The reciprocal of a positive signed real exists. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 15-May-1996.) |
⊢ (0R <R 𝐴 → ∃𝑥 ∈ R (𝐴 ·R 𝑥) = 1R) | ||
Theorem | addgt0sr 7471 | The sum of two positive signed reals is positive. (Contributed by NM, 14-May-1996.) |
⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 +R 𝐵)) | ||
Theorem | ltadd1sr 7472 | Adding one to a signed real yields a larger signed real. (Contributed by Jim Kingdon, 7-Jul-2021.) |
⊢ (𝐴 ∈ R → 𝐴 <R (𝐴 +R 1R)) | ||
Theorem | mulgt0sr 7473 | The product of two positive signed reals is positive. (Contributed by NM, 13-May-1996.) |
⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵)) | ||
Theorem | aptisr 7474 | Apartness of signed reals is tight. (Contributed by Jim Kingdon, 29-Jan-2020.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R ∧ ¬ (𝐴 <R 𝐵 ∨ 𝐵 <R 𝐴)) → 𝐴 = 𝐵) | ||
Theorem | mulextsr1lem 7475 | Lemma for mulextsr1 7476. (Contributed by Jim Kingdon, 17-Feb-2020.) |
⊢ (((𝑋 ∈ P ∧ 𝑌 ∈ P) ∧ (𝑍 ∈ P ∧ 𝑊 ∈ P) ∧ (𝑈 ∈ P ∧ 𝑉 ∈ P)) → ((((𝑋 ·P 𝑈) +P (𝑌 ·P 𝑉)) +P ((𝑍 ·P 𝑉) +P (𝑊 ·P 𝑈)))<P (((𝑋 ·P 𝑉) +P (𝑌 ·P 𝑈)) +P ((𝑍 ·P 𝑈) +P (𝑊 ·P 𝑉))) → ((𝑋 +P 𝑊)<P (𝑌 +P 𝑍) ∨ (𝑍 +P 𝑌)<P (𝑊 +P 𝑋)))) | ||
Theorem | mulextsr1 7476 | Strong extensionality of multiplication of signed reals. (Contributed by Jim Kingdon, 18-Feb-2020.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R) → ((𝐴 ·R 𝐶) <R (𝐵 ·R 𝐶) → (𝐴 <R 𝐵 ∨ 𝐵 <R 𝐴))) | ||
Theorem | archsr 7477* | For any signed real, there is an integer that is greater than it. This is also known as the "archimedean property". The expression [〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉] ~Q }, {𝑢 ∣ [〈𝑥, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R is the embedding of the positive integer 𝑥 into the signed reals. (Contributed by Jim Kingdon, 23-Apr-2020.) |
⊢ (𝐴 ∈ R → ∃𝑥 ∈ N 𝐴 <R [〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑥, 1o〉] ~Q }, {𝑢 ∣ [〈𝑥, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R ) | ||
Theorem | srpospr 7478* | Mapping from a signed real greater than zero to a positive real. (Contributed by Jim Kingdon, 25-Jun-2021.) |
⊢ ((𝐴 ∈ R ∧ 0R <R 𝐴) → ∃!𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) | ||
Theorem | prsrcl 7479 | Mapping from a positive real to a signed real. (Contributed by Jim Kingdon, 25-Jun-2021.) |
⊢ (𝐴 ∈ P → [〈(𝐴 +P 1P), 1P〉] ~R ∈ R) | ||
Theorem | prsrpos 7480 | Mapping from a positive real to a signed real yields a result greater than zero. (Contributed by Jim Kingdon, 25-Jun-2021.) |
⊢ (𝐴 ∈ P → 0R <R [〈(𝐴 +P 1P), 1P〉] ~R ) | ||
Theorem | prsradd 7481 | Mapping from positive real addition to signed real addition. (Contributed by Jim Kingdon, 29-Jun-2021.) |
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → [〈((𝐴 +P 𝐵) +P 1P), 1P〉] ~R = ([〈(𝐴 +P 1P), 1P〉] ~R +R [〈(𝐵 +P 1P), 1P〉] ~R )) | ||
Theorem | prsrlt 7482 | Mapping from positive real ordering to signed real ordering. (Contributed by Jim Kingdon, 29-Jun-2021.) |
⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ [〈(𝐴 +P 1P), 1P〉] ~R <R [〈(𝐵 +P 1P), 1P〉] ~R )) | ||
Theorem | prsrriota 7483* | Mapping a restricted iota from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.) |
⊢ ((𝐴 ∈ R ∧ 0R <R 𝐴) → [〈((℩𝑥 ∈ P [〈(𝑥 +P 1P), 1P〉] ~R = 𝐴) +P 1P), 1P〉] ~R = 𝐴) | ||
Theorem | caucvgsrlemcl 7484* | Lemma for caucvgsr 7497. Terms of the sequence from caucvgsrlemgt1 7490 can be mapped to positive reals. (Contributed by Jim Kingdon, 2-Jul-2021.) |
⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ N) → (℩𝑦 ∈ P (𝐹‘𝐴) = [〈(𝑦 +P 1P), 1P〉] ~R ) ∈ P) | ||
Theorem | caucvgsrlemasr 7485* | Lemma for caucvgsr 7497. The lower bound is a signed real. (Contributed by Jim Kingdon, 4-Jul-2021.) |
⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) ⇒ ⊢ (𝜑 → 𝐴 ∈ R) | ||
Theorem | caucvgsrlemfv 7486* | Lemma for caucvgsr 7497. Coercing sequence value from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.) |
⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑥 ∈ N ↦ (℩𝑦 ∈ P (𝐹‘𝑥) = [〈(𝑦 +P 1P), 1P〉] ~R )) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ N) → [〈((𝐺‘𝐴) +P 1P), 1P〉] ~R = (𝐹‘𝐴)) | ||
Theorem | caucvgsrlemf 7487* | Lemma for caucvgsr 7497. Defining the sequence in terms of positive reals. (Contributed by Jim Kingdon, 23-Jun-2021.) |
⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑥 ∈ N ↦ (℩𝑦 ∈ P (𝐹‘𝑥) = [〈(𝑦 +P 1P), 1P〉] ~R )) ⇒ ⊢ (𝜑 → 𝐺:N⟶P) | ||
Theorem | caucvgsrlemcau 7488* | Lemma for caucvgsr 7497. Defining the Cauchy condition in terms of positive reals. (Contributed by Jim Kingdon, 23-Jun-2021.) |
⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑥 ∈ N ↦ (℩𝑦 ∈ P (𝐹‘𝑥) = [〈(𝑦 +P 1P), 1P〉] ~R )) ⇒ ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐺‘𝑛)<P ((𝐺‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉) ∧ (𝐺‘𝑘)<P ((𝐺‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉)))) | ||
Theorem | caucvgsrlembound 7489* | Lemma for caucvgsr 7497. Defining the boundedness condition in terms of positive reals. (Contributed by Jim Kingdon, 25-Jun-2021.) |
⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑥 ∈ N ↦ (℩𝑦 ∈ P (𝐹‘𝑥) = [〈(𝑦 +P 1P), 1P〉] ~R )) ⇒ ⊢ (𝜑 → ∀𝑚 ∈ N 1P<P (𝐺‘𝑚)) | ||
Theorem | caucvgsrlemgt1 7490* | Lemma for caucvgsr 7497. A Cauchy sequence whose terms are greater than one converges. (Contributed by Jim Kingdon, 22-Jun-2021.) |
⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ R ∀𝑥 ∈ R (0R <R 𝑥 → ∃𝑗 ∈ N ∀𝑖 ∈ N (𝑗 <N 𝑖 → ((𝐹‘𝑖) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹‘𝑖) +R 𝑥))))) | ||
Theorem | caucvgsrlemoffval 7491* | Lemma for caucvgsr 7497. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.) |
⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) ⇒ ⊢ ((𝜑 ∧ 𝐽 ∈ N) → ((𝐺‘𝐽) +R 𝐴) = ((𝐹‘𝐽) +R 1R)) | ||
Theorem | caucvgsrlemofff 7492* | Lemma for caucvgsr 7497. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.) |
⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) ⇒ ⊢ (𝜑 → 𝐺:N⟶R) | ||
Theorem | caucvgsrlemoffcau 7493* | Lemma for caucvgsr 7497. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.) |
⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) ⇒ ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐺‘𝑛) <R ((𝐺‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐺‘𝑘) <R ((𝐺‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) | ||
Theorem | caucvgsrlemoffgt1 7494* | Lemma for caucvgsr 7497. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.) |
⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) ⇒ ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐺‘𝑚)) | ||
Theorem | caucvgsrlemoffres 7495* | Lemma for caucvgsr 7497. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.) |
⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) & ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ R ∀𝑥 ∈ R (0R <R 𝑥 → ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → ((𝐹‘𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹‘𝑘) +R 𝑥))))) | ||
Theorem | caucvgsrlembnd 7496* | Lemma for caucvgsr 7497. A Cauchy sequence with a lower bound converges. (Contributed by Jim Kingdon, 19-Jun-2021.) |
⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) & ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ R ∀𝑥 ∈ R (0R <R 𝑥 → ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → ((𝐹‘𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹‘𝑘) +R 𝑥))))) | ||
Theorem | caucvgsr 7497* |
A Cauchy sequence of signed reals with a modulus of convergence
converges to a signed real. This is basically Corollary 11.2.13 of
[HoTT], p. (varies). The HoTT book
theorem has a modulus of
convergence (that is, a rate of convergence) specified by (11.2.9) in
HoTT whereas this theorem fixes the rate of convergence to say that
all terms after the nth term must be within 1 / 𝑛 of the nth term
(it should later be able to prove versions of this theorem with a
different fixed rate or a modulus of convergence supplied as a
hypothesis).
This is similar to caucvgprpr 7421 but is for signed reals rather than positive reals. Here is an outline of how we prove it: 1. Choose a lower bound for the sequence (see caucvgsrlembnd 7496). 2. Offset each element of the sequence so that each element of the resulting sequence is greater than one (greater than zero would not suffice, because the limit as well as the elements of the sequence need to be positive) (see caucvgsrlemofff 7492). 3. Since a signed real (element of R) which is greater than zero can be mapped to a positive real (element of P), perform that mapping on each element of the sequence and invoke caucvgprpr 7421 to get a limit (see caucvgsrlemgt1 7490). 4. Map the resulting limit from positive reals back to signed reals (see caucvgsrlemgt1 7490). 5. Offset that limit so that we get the limit of the original sequence rather than the limit of the offsetted sequence (see caucvgsrlemoffres 7495). (Contributed by Jim Kingdon, 20-Jun-2021.) |
⊢ (𝜑 → 𝐹:N⟶R) & ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ R ∀𝑥 ∈ R (0R <R 𝑥 → ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → ((𝐹‘𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹‘𝑘) +R 𝑥))))) | ||
Syntax | cc 7498 | Class of complex numbers. |
class ℂ | ||
Syntax | cr 7499 | Class of real numbers. |
class ℝ | ||
Syntax | cc0 7500 | Extend class notation to include the complex number 0. |
class 0 |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |