| Intuitionistic Logic Explorer Theorem List (p. 75 of 165) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | djuen 7401 | Disjoint unions of equinumerous sets are equinumerous. (Contributed by Jim Kingdon, 30-Jul-2023.) |
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 ⊔ 𝐶) ≈ (𝐵 ⊔ 𝐷)) | ||
| Theorem | djuenun 7402 | Disjoint union is equinumerous to union for disjoint sets. (Contributed by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 19-Aug-2023.) |
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ⊔ 𝐶) ≈ (𝐵 ∪ 𝐷)) | ||
| Theorem | dju1en 7403 | Cardinal addition with cardinal one (which is the same as ordinal one). Used in proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴) → (𝐴 ⊔ 1o) ≈ suc 𝐴) | ||
| Theorem | dju0en 7404 | Cardinal addition with cardinal zero (the empty set). Part (a1) of proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ⊔ ∅) ≈ 𝐴) | ||
| Theorem | xp2dju 7405 | Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ (2o × 𝐴) = (𝐴 ⊔ 𝐴) | ||
| Theorem | djucomen 7406 | Commutative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 24-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ≈ (𝐵 ⊔ 𝐴)) | ||
| Theorem | djuassen 7407 | Associative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝐴 ⊔ 𝐵) ⊔ 𝐶) ≈ (𝐴 ⊔ (𝐵 ⊔ 𝐶))) | ||
| Theorem | xpdjuen 7408 | Cardinal multiplication distributes over cardinal addition. Theorem 6I(3) of [Enderton] p. 142. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 × (𝐵 ⊔ 𝐶)) ≈ ((𝐴 × 𝐵) ⊔ (𝐴 × 𝐶))) | ||
| Theorem | djudoml 7409 | A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ≼ (𝐴 ⊔ 𝐵)) | ||
| Theorem | djudomr 7410 | A set is dominated by its disjoint union with another. (Contributed by Jim Kingdon, 11-Jul-2023.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ≼ (𝐴 ⊔ 𝐵)) | ||
| Theorem | exmidontriimlem1 7411 | Lemma for exmidontriim 7415. A variation of r19.30dc 2678. (Contributed by Jim Kingdon, 12-Aug-2024.) |
| ⊢ ((∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓 ∨ 𝜒) ∧ EXMID) → (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓 ∨ ∀𝑥 ∈ 𝐴 𝜒)) | ||
| Theorem | exmidontriimlem2 7412* | Lemma for exmidontriim 7415. (Contributed by Jim Kingdon, 12-Aug-2024.) |
| ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ (𝜑 → EXMID) & ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ∨ 𝑦 ∈ 𝐴)) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∨ ∀𝑦 ∈ 𝐵 𝑦 ∈ 𝐴)) | ||
| Theorem | exmidontriimlem3 7413* | Lemma for exmidontriim 7415. What we get to do based on induction on both 𝐴 and 𝐵. (Contributed by Jim Kingdon, 10-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ (𝜑 → EXMID) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 ∀𝑦 ∈ On (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧)) & ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ∨ 𝑦 ∈ 𝐴)) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | ||
| Theorem | exmidontriimlem4 7414* | Lemma for exmidontriim 7415. The induction step for the induction on 𝐴. (Contributed by Jim Kingdon, 10-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ (𝜑 → EXMID) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 ∀𝑦 ∈ On (𝑧 ∈ 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 ∈ 𝑧)) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | ||
| Theorem | exmidontriim 7415* | Excluded middle implies ordinal trichotomy. Lemma 10.4.1 of [HoTT], p. (varies). The proof follows the proof from the HoTT book fairly closely. (Contributed by Jim Kingdon, 10-Aug-2024.) |
| ⊢ (EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | ||
| Theorem | iftrueb01 7416 | Using an if expression to represent a truth value by ∅ or 1o. Unlike some theorems using if, 𝜑 does not need to be decidable. (Contributed by Jim Kingdon, 9-Jan-2026.) |
| ⊢ (if(𝜑, 1o, ∅) = 1o ↔ 𝜑) | ||
| Theorem | pw1m 7417* | A truth value which is inhabited is equal to true. This is a variation of pwntru 4283 and pwtrufal 16392. (Contributed by Jim Kingdon, 10-Jan-2026.) |
| ⊢ ((𝐴 ∈ 𝒫 1o ∧ ∃𝑥 𝑥 ∈ 𝐴) → 𝐴 = 1o) | ||
| Theorem | pw1if 7418 | Expressing a truth value in terms of an if expression. (Contributed by Jim Kingdon, 10-Jan-2026.) |
| ⊢ (𝐴 ∈ 𝒫 1o → if(𝐴 = 1o, 1o, ∅) = 𝐴) | ||
| Theorem | pw1on 7419 | The power set of 1o is an ordinal. (Contributed by Jim Kingdon, 29-Jul-2024.) |
| ⊢ 𝒫 1o ∈ On | ||
| Theorem | pw1dom2 7420 | The power set of 1o dominates 2o. Also see pwpw0ss 3883 which is similar. (Contributed by Jim Kingdon, 21-Sep-2022.) |
| ⊢ 2o ≼ 𝒫 1o | ||
| Theorem | pw1ne0 7421 | The power set of 1o is not zero. (Contributed by Jim Kingdon, 30-Jul-2024.) |
| ⊢ 𝒫 1o ≠ ∅ | ||
| Theorem | pw1ne1 7422 | The power set of 1o is not one. (Contributed by Jim Kingdon, 30-Jul-2024.) |
| ⊢ 𝒫 1o ≠ 1o | ||
| Theorem | pw1ne3 7423 | The power set of 1o is not three. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
| ⊢ 𝒫 1o ≠ 3o | ||
| Theorem | pw1nel3 7424 | Negated excluded middle implies that the power set of 1o is not an element of 3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
| ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ 3o) | ||
| Theorem | sucpw1ne3 7425 | Negated excluded middle implies that the successor of the power set of 1o is not three . (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
| ⊢ (¬ EXMID → suc 𝒫 1o ≠ 3o) | ||
| Theorem | sucpw1nel3 7426 | The successor of the power set of 1o is not an element of 3o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
| ⊢ ¬ suc 𝒫 1o ∈ 3o | ||
| Theorem | 3nelsucpw1 7427 | Three is not an element of the successor of the power set of 1o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.) |
| ⊢ ¬ 3o ∈ suc 𝒫 1o | ||
| Theorem | sucpw1nss3 7428 | Negated excluded middle implies that the successor of the power set of 1o is not a subset of 3o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.) |
| ⊢ (¬ EXMID → ¬ suc 𝒫 1o ⊆ 3o) | ||
| Theorem | 3nsssucpw1 7429 | Negated excluded middle implies that 3o is not a subset of the successor of the power set of 1o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.) |
| ⊢ (¬ EXMID → ¬ 3o ⊆ suc 𝒫 1o) | ||
| Theorem | onntri35 7430* |
Double negated ordinal trichotomy.
There are five equivalent statements: (1) ¬ ¬ ∀𝑥 ∈ On∀𝑦 ∈ On(𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥), (2) ¬ ¬ ∀𝑥 ∈ On∀𝑦 ∈ On(𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥), (3) ∀𝑥 ∈ On∀𝑦 ∈ On¬ ¬ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥), (4) ∀𝑥 ∈ On∀𝑦 ∈ On¬ ¬ (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥), and (5) ¬ ¬ EXMID. That these are all equivalent is expressed by (1) implies (3) (onntri13 7431), (3) implies (5) (onntri35 7430), (5) implies (1) (onntri51 7433), (2) implies (4) (onntri24 7435), (4) implies (5) (onntri45 7434), and (5) implies (2) (onntri52 7437). Another way of stating this is that EXMID is equivalent to trichotomy, either the 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 or the 𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥 form, as shown in exmidontri 7432 and exmidontri2or 7436, respectively. Thus ¬ ¬ EXMID is equivalent to (1) or (2). In addition, ¬ ¬ EXMID is equivalent to (3) by onntri3or 7438 and (4) by onntri2or 7439. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
| ⊢ (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ¬ ¬ EXMID) | ||
| Theorem | onntri13 7431 | Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
| ⊢ (¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | ||
| Theorem | exmidontri 7432* | Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.) |
| ⊢ (EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | ||
| Theorem | onntri51 7433* | Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
| ⊢ (¬ ¬ EXMID → ¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | ||
| Theorem | onntri45 7434* | Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
| ⊢ (∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) → ¬ ¬ EXMID) | ||
| Theorem | onntri24 7435 | Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
| ⊢ (¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) → ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | ||
| Theorem | exmidontri2or 7436* | Ordinal trichotomy is equivalent to excluded middle. (Contributed by Jim Kingdon, 26-Aug-2024.) |
| ⊢ (EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | ||
| Theorem | onntri52 7437* | Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
| ⊢ (¬ ¬ EXMID → ¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | ||
| Theorem | onntri3or 7438* | Double negated ordinal trichotomy. (Contributed by Jim Kingdon, 25-Aug-2024.) |
| ⊢ (¬ ¬ EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) | ||
| Theorem | onntri2or 7439* | Double negated ordinal trichotomy. (Contributed by Jim Kingdon, 25-Aug-2024.) |
| ⊢ (¬ ¬ EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On ¬ ¬ (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | ||
| Theorem | fmelpw1o 7440 |
With a formula 𝜑 one can associate an element of
𝒫 1o, which
can therefore be thought of as the set of "truth values" (but
recall that
there are no other genuine truth values than ⊤ and ⊥, by
nndc 856, which translate to 1o and ∅
respectively by iftrue 3607
and iffalse 3610, giving pwtrufal 16392).
As proved in if0ab 16193, the associated element of 𝒫 1o is the extension, in 𝒫 1o, of the formula 𝜑. (Contributed by BJ, 15-Aug-2024.) |
| ⊢ if(𝜑, 1o, ∅) ∈ 𝒫 1o | ||
| Syntax | wap 7441 | Apartness predicate symbol. |
| wff 𝑅 Ap 𝐴 | ||
| Definition | df-pap 7442* | Apartness predicate. A relation 𝑅 is an apartness if it is irreflexive, symmetric, and cotransitive. (Contributed by Jim Kingdon, 14-Feb-2025.) |
| ⊢ (𝑅 Ap 𝐴 ↔ ((𝑅 ⊆ (𝐴 × 𝐴) ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥𝑅𝑥) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑦𝑅𝑧))))) | ||
| Syntax | wtap 7443 | Tight apartness predicate symbol. |
| wff 𝑅 TAp 𝐴 | ||
| Definition | df-tap 7444* | Tight apartness predicate. A relation 𝑅 is a tight apartness if it is irreflexive, symmetric, cotransitive, and tight. (Contributed by Jim Kingdon, 5-Feb-2025.) |
| ⊢ (𝑅 TAp 𝐴 ↔ (𝑅 Ap 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (¬ 𝑥𝑅𝑦 → 𝑥 = 𝑦))) | ||
| Theorem | dftap2 7445* | Tight apartness with the apartness properties from df-pap 7442 expanded. (Contributed by Jim Kingdon, 21-Feb-2025.) |
| ⊢ (𝑅 TAp 𝐴 ↔ (𝑅 ⊆ (𝐴 × 𝐴) ∧ (∀𝑥 ∈ 𝐴 ¬ 𝑥𝑅𝑥 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → 𝑦𝑅𝑥)) ∧ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑦𝑅𝑧)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (¬ 𝑥𝑅𝑦 → 𝑥 = 𝑦)))) | ||
| Theorem | tapeq1 7446 | Equality theorem for tight apartness predicate. (Contributed by Jim Kingdon, 8-Feb-2025.) |
| ⊢ (𝑅 = 𝑆 → (𝑅 TAp 𝐴 ↔ 𝑆 TAp 𝐴)) | ||
| Theorem | tapeq2 7447 | Equality theorem for tight apartness predicate. (Contributed by Jim Kingdon, 15-Feb-2025.) |
| ⊢ (𝐴 = 𝐵 → (𝑅 TAp 𝐴 ↔ 𝑅 TAp 𝐵)) | ||
| Theorem | netap 7448* | Negated equality on a set with decidable equality is a tight apartness. (Contributed by Jim Kingdon, 5-Feb-2025.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦 → {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)} TAp 𝐴) | ||
| Theorem | 2onetap 7449* | Negated equality is a tight apartness on 2o. (Contributed by Jim Kingdon, 6-Feb-2025.) |
| ⊢ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} TAp 2o | ||
| Theorem | 2oneel 7450* | ∅ and 1o are two unequal elements of 2o. (Contributed by Jim Kingdon, 8-Feb-2025.) |
| ⊢ 〈∅, 1o〉 ∈ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ 𝑢 ≠ 𝑣)} | ||
| Theorem | 2omotaplemap 7451* | Lemma for 2omotap 7453. (Contributed by Jim Kingdon, 6-Feb-2025.) |
| ⊢ (¬ ¬ 𝜑 → {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 2o ∧ 𝑣 ∈ 2o) ∧ (𝜑 ∧ 𝑢 ≠ 𝑣))} TAp 2o) | ||
| Theorem | 2omotaplemst 7452* | Lemma for 2omotap 7453. (Contributed by Jim Kingdon, 6-Feb-2025.) |
| ⊢ ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → 𝜑) | ||
| Theorem | 2omotap 7453 | If there is at most one tight apartness on 2o, excluded middle follows. Based on online discussions by Tom de Jong, Andrew W Swan, and Martin Escardo. (Contributed by Jim Kingdon, 6-Feb-2025.) |
| ⊢ (∃*𝑟 𝑟 TAp 2o → EXMID) | ||
| Theorem | exmidapne 7454* | Excluded middle implies there is only one tight apartness on any class, namely negated equality. (Contributed by Jim Kingdon, 14-Feb-2025.) |
| ⊢ (EXMID → (𝑅 TAp 𝐴 ↔ 𝑅 = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ 𝑢 ≠ 𝑣)})) | ||
| Theorem | exmidmotap 7455* | The proposition that every class has at most one tight apartness is equivalent to excluded middle. (Contributed by Jim Kingdon, 14-Feb-2025.) |
| ⊢ (EXMID ↔ ∀𝑥∃*𝑟 𝑟 TAp 𝑥) | ||
We have already introduced the full Axiom of Choice df-ac 7396 but since it implies excluded middle as shown at exmidac 7399, it is not especially relevant to us. In this section we define countable choice and dependent choice, which are not as strong as thus often considered in mathematics which seeks to avoid full excluded middle. | ||
| Syntax | wacc 7456 | Formula for an abbreviation of countable choice. |
| wff CCHOICE | ||
| Definition | df-cc 7457* | The expression CCHOICE will be used as a readable shorthand for any form of countable choice, analogous to df-ac 7396 for full choice. (Contributed by Jim Kingdon, 27-Nov-2023.) |
| ⊢ (CCHOICE ↔ ∀𝑥(dom 𝑥 ≈ ω → ∃𝑓(𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥))) | ||
| Theorem | ccfunen 7458* | Existence of a choice function for a countably infinite set. (Contributed by Jim Kingdon, 28-Nov-2023.) |
| ⊢ (𝜑 → CCHOICE) & ⊢ (𝜑 → 𝐴 ≈ ω) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑤 𝑤 ∈ 𝑥) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) | ||
| Theorem | cc1 7459* | Countable choice in terms of a choice function on a countably infinite set of inhabited sets. (Contributed by Jim Kingdon, 27-Apr-2024.) |
| ⊢ (CCHOICE → ∀𝑥((𝑥 ≈ ω ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 𝑤 ∈ 𝑧) → ∃𝑓∀𝑧 ∈ 𝑥 (𝑓‘𝑧) ∈ 𝑧)) | ||
| Theorem | cc2lem 7460* | Lemma for cc2 7461. (Contributed by Jim Kingdon, 27-Apr-2024.) |
| ⊢ (𝜑 → CCHOICE) & ⊢ (𝜑 → 𝐹 Fn ω) & ⊢ (𝜑 → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑥)) & ⊢ 𝐴 = (𝑛 ∈ ω ↦ ({𝑛} × (𝐹‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ω ↦ (2nd ‘(𝑓‘(𝐴‘𝑛)))) ⇒ ⊢ (𝜑 → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛))) | ||
| Theorem | cc2 7461* | Countable choice using sequences instead of countable sets. (Contributed by Jim Kingdon, 27-Apr-2024.) |
| ⊢ (𝜑 → CCHOICE) & ⊢ (𝜑 → 𝐹 Fn ω) & ⊢ (𝜑 → ∀𝑥 ∈ ω ∃𝑤 𝑤 ∈ (𝐹‘𝑥)) ⇒ ⊢ (𝜑 → ∃𝑔(𝑔 Fn ω ∧ ∀𝑛 ∈ ω (𝑔‘𝑛) ∈ (𝐹‘𝑛))) | ||
| Theorem | cc3 7462* | Countable choice using a sequence F(n) . (Contributed by Mario Carneiro, 8-Feb-2013.) (Revised by Jim Kingdon, 29-Apr-2024.) |
| ⊢ (𝜑 → CCHOICE) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 𝐹 ∈ V) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑤 𝑤 ∈ 𝐹) & ⊢ (𝜑 → 𝑁 ≈ ω) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ 𝐹)) | ||
| Theorem | cc4f 7463* | Countable choice by showing the existence of a function 𝑓 which can choose a value at each index 𝑛 such that 𝜒 holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.) |
| ⊢ (𝜑 → CCHOICE) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ Ⅎ𝑛𝐴 & ⊢ (𝜑 → 𝑁 ≈ ω) & ⊢ (𝑥 = (𝑓‘𝑛) → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜒)) | ||
| Theorem | cc4 7464* | Countable choice by showing the existence of a function 𝑓 which can choose a value at each index 𝑛 such that 𝜒 holds. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 1-May-2024.) |
| ⊢ (𝜑 → CCHOICE) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑁 ≈ ω) & ⊢ (𝑥 = (𝑓‘𝑛) → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:𝑁⟶𝐴 ∧ ∀𝑛 ∈ 𝑁 𝜒)) | ||
| Theorem | cc4n 7465* | Countable choice with a simpler restriction on how every set in the countable collection needs to be inhabited. That is, compared with cc4 7464, the hypotheses only require an A(n) for each value of 𝑛, not a single set 𝐴 which suffices for every 𝑛 ∈ ω. (Contributed by Mario Carneiro, 7-Apr-2013.) (Revised by Jim Kingdon, 3-May-2024.) |
| ⊢ (𝜑 → CCHOICE) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 {𝑥 ∈ 𝐴 ∣ 𝜓} ∈ 𝑉) & ⊢ (𝜑 → 𝑁 ≈ ω) & ⊢ (𝑥 = (𝑓‘𝑛) → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 𝜒)) | ||
| Theorem | acnccim 7466 | Given countable choice, every set has choice sets of length ω. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (CCHOICE → AC ω = V) | ||
This section derives the basics of real and complex numbers. To construct the real numbers constructively, we follow two main sources. The first is Metamath Proof Explorer, which has the advantage of being already formalized in metamath. Its disadvantage, for our purposes, is that it assumes the law of the excluded middle throughout. Since we have already developed natural numbers ( for example, nna0 6628 and similar theorems ), going from there to positive integers (df-ni 7499) and then positive rational numbers (df-nqqs 7543) does not involve a major change in approach compared with the Metamath Proof Explorer. It is when we proceed to Dedekind cuts that we bring in more material from Section 11.2 of [HoTT], which focuses on the aspects of Dedekind cuts which are different without excluded middle or choice principles. With excluded middle, it is natural to define a cut as the lower set only (as Metamath Proof Explorer does), but here we define the cut as a pair of both the lower and upper sets, as [HoTT] does. There are also differences in how we handle order and replacing "not equal to zero" with "apart from zero". When working constructively, there are several possible definitions of real numbers. Here we adopt the most common definition, as two-sided Dedekind cuts with the properties described at df-inp 7661. The Cauchy reals (without countable choice) fail to satisfy ax-caucvg 8127 and the MacNeille reals fail to satisfy axltwlin 8222, and we do not develop them here. For more on differing definitions of the reals, see the introduction to Chapter 11 in [HoTT] or Section 1.2 of [BauerHanson]. | ||
| Syntax | cnpi 7467 |
The set of positive integers, which is the set of natural numbers ω
with 0 removed.
Note: This is the start of the Dedekind-cut construction of real and complex numbers. |
| class N | ||
| Syntax | cpli 7468 | Positive integer addition. |
| class +N | ||
| Syntax | cmi 7469 | Positive integer multiplication. |
| class ·N | ||
| Syntax | clti 7470 | Positive integer ordering relation. |
| class <N | ||
| Syntax | cplpq 7471 | Positive pre-fraction addition. |
| class +pQ | ||
| Syntax | cmpq 7472 | Positive pre-fraction multiplication. |
| class ·pQ | ||
| Syntax | cltpq 7473 | Positive pre-fraction ordering relation. |
| class <pQ | ||
| Syntax | ceq 7474 | Equivalence class used to construct positive fractions. |
| class ~Q | ||
| Syntax | cnq 7475 | Set of positive fractions. |
| class Q | ||
| Syntax | c1q 7476 | The positive fraction constant 1. |
| class 1Q | ||
| Syntax | cplq 7477 | Positive fraction addition. |
| class +Q | ||
| Syntax | cmq 7478 | Positive fraction multiplication. |
| class ·Q | ||
| Syntax | crq 7479 | Positive fraction reciprocal operation. |
| class *Q | ||
| Syntax | cltq 7480 | Positive fraction ordering relation. |
| class <Q | ||
| Syntax | ceq0 7481 | Equivalence class used to construct nonnegative fractions. |
| class ~Q0 | ||
| Syntax | cnq0 7482 | Set of nonnegative fractions. |
| class Q0 | ||
| Syntax | c0q0 7483 | The nonnegative fraction constant 0. |
| class 0Q0 | ||
| Syntax | cplq0 7484 | Nonnegative fraction addition. |
| class +Q0 | ||
| Syntax | cmq0 7485 | Nonnegative fraction multiplication. |
| class ·Q0 | ||
| Syntax | cnp 7486 | Set of positive reals. |
| class P | ||
| Syntax | c1p 7487 | Positive real constant 1. |
| class 1P | ||
| Syntax | cpp 7488 | Positive real addition. |
| class +P | ||
| Syntax | cmp 7489 | Positive real multiplication. |
| class ·P | ||
| Syntax | cltp 7490 | Positive real ordering relation. |
| class <P | ||
| Syntax | cer 7491 | Equivalence class used to construct signed reals. |
| class ~R | ||
| Syntax | cnr 7492 | Set of signed reals. |
| class R | ||
| Syntax | c0r 7493 | The signed real constant 0. |
| class 0R | ||
| Syntax | c1r 7494 | The signed real constant 1. |
| class 1R | ||
| Syntax | cm1r 7495 | The signed real constant -1. |
| class -1R | ||
| Syntax | cplr 7496 | Signed real addition. |
| class +R | ||
| Syntax | cmr 7497 | Signed real multiplication. |
| class ·R | ||
| Syntax | cltr 7498 | Signed real ordering relation. |
| class <R | ||
| Definition | df-ni 7499 | Define the class of positive integers. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 15-Aug-1995.) |
| ⊢ N = (ω ∖ {∅}) | ||
| Definition | df-pli 7500 | Define addition on positive integers. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 26-Aug-1995.) |
| ⊢ +N = ( +o ↾ (N × N)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |