Detailed syntax breakdown of Definition df-inp
Step | Hyp | Ref
| Expression |
1 | | cnp 7253 |
. 2
class
P |
2 | | vl |
. . . . . . . 8
setvar 𝑙 |
3 | 2 | cv 1347 |
. . . . . . 7
class 𝑙 |
4 | | cnq 7242 |
. . . . . . 7
class
Q |
5 | 3, 4 | wss 3121 |
. . . . . 6
wff 𝑙 ⊆
Q |
6 | | vu |
. . . . . . . 8
setvar 𝑢 |
7 | 6 | cv 1347 |
. . . . . . 7
class 𝑢 |
8 | 7, 4 | wss 3121 |
. . . . . 6
wff 𝑢 ⊆
Q |
9 | 5, 8 | wa 103 |
. . . . 5
wff (𝑙 ⊆ Q ∧
𝑢 ⊆
Q) |
10 | | vq |
. . . . . . . 8
setvar 𝑞 |
11 | 10, 2 | wel 2142 |
. . . . . . 7
wff 𝑞 ∈ 𝑙 |
12 | 11, 10, 4 | wrex 2449 |
. . . . . 6
wff
∃𝑞 ∈
Q 𝑞 ∈
𝑙 |
13 | | vr |
. . . . . . . 8
setvar 𝑟 |
14 | 13, 6 | wel 2142 |
. . . . . . 7
wff 𝑟 ∈ 𝑢 |
15 | 14, 13, 4 | wrex 2449 |
. . . . . 6
wff
∃𝑟 ∈
Q 𝑟 ∈
𝑢 |
16 | 12, 15 | wa 103 |
. . . . 5
wff
(∃𝑞 ∈
Q 𝑞 ∈
𝑙 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑢) |
17 | 9, 16 | wa 103 |
. . . 4
wff ((𝑙 ⊆ Q ∧
𝑢 ⊆ Q)
∧ (∃𝑞 ∈
Q 𝑞 ∈
𝑙 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑢)) |
18 | 10 | cv 1347 |
. . . . . . . . . . 11
class 𝑞 |
19 | 13 | cv 1347 |
. . . . . . . . . . 11
class 𝑟 |
20 | | cltq 7247 |
. . . . . . . . . . 11
class
<Q |
21 | 18, 19, 20 | wbr 3989 |
. . . . . . . . . 10
wff 𝑞 <Q
𝑟 |
22 | 13, 2 | wel 2142 |
. . . . . . . . . 10
wff 𝑟 ∈ 𝑙 |
23 | 21, 22 | wa 103 |
. . . . . . . . 9
wff (𝑞 <Q
𝑟 ∧ 𝑟 ∈ 𝑙) |
24 | 23, 13, 4 | wrex 2449 |
. . . . . . . 8
wff
∃𝑟 ∈
Q (𝑞
<Q 𝑟 ∧ 𝑟 ∈ 𝑙) |
25 | 11, 24 | wb 104 |
. . . . . . 7
wff (𝑞 ∈ 𝑙 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ 𝑙)) |
26 | 25, 10, 4 | wral 2448 |
. . . . . 6
wff
∀𝑞 ∈
Q (𝑞 ∈
𝑙 ↔ ∃𝑟 ∈ Q (𝑞 <Q
𝑟 ∧ 𝑟 ∈ 𝑙)) |
27 | 10, 6 | wel 2142 |
. . . . . . . . . 10
wff 𝑞 ∈ 𝑢 |
28 | 21, 27 | wa 103 |
. . . . . . . . 9
wff (𝑞 <Q
𝑟 ∧ 𝑞 ∈ 𝑢) |
29 | 28, 10, 4 | wrex 2449 |
. . . . . . . 8
wff
∃𝑞 ∈
Q (𝑞
<Q 𝑟 ∧ 𝑞 ∈ 𝑢) |
30 | 14, 29 | wb 104 |
. . . . . . 7
wff (𝑟 ∈ 𝑢 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑢)) |
31 | 30, 13, 4 | wral 2448 |
. . . . . 6
wff
∀𝑟 ∈
Q (𝑟 ∈
𝑢 ↔ ∃𝑞 ∈ Q (𝑞 <Q
𝑟 ∧ 𝑞 ∈ 𝑢)) |
32 | 26, 31 | wa 103 |
. . . . 5
wff
(∀𝑞 ∈
Q (𝑞 ∈
𝑙 ↔ ∃𝑟 ∈ Q (𝑞 <Q
𝑟 ∧ 𝑟 ∈ 𝑙)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑢 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑢))) |
33 | 11, 27 | wa 103 |
. . . . . . 7
wff (𝑞 ∈ 𝑙 ∧ 𝑞 ∈ 𝑢) |
34 | 33 | wn 3 |
. . . . . 6
wff ¬
(𝑞 ∈ 𝑙 ∧ 𝑞 ∈ 𝑢) |
35 | 34, 10, 4 | wral 2448 |
. . . . 5
wff
∀𝑞 ∈
Q ¬ (𝑞
∈ 𝑙 ∧ 𝑞 ∈ 𝑢) |
36 | 11, 14 | wo 703 |
. . . . . . . 8
wff (𝑞 ∈ 𝑙 ∨ 𝑟 ∈ 𝑢) |
37 | 21, 36 | wi 4 |
. . . . . . 7
wff (𝑞 <Q
𝑟 → (𝑞 ∈ 𝑙 ∨ 𝑟 ∈ 𝑢)) |
38 | 37, 13, 4 | wral 2448 |
. . . . . 6
wff
∀𝑟 ∈
Q (𝑞
<Q 𝑟 → (𝑞 ∈ 𝑙 ∨ 𝑟 ∈ 𝑢)) |
39 | 38, 10, 4 | wral 2448 |
. . . . 5
wff
∀𝑞 ∈
Q ∀𝑟
∈ Q (𝑞
<Q 𝑟 → (𝑞 ∈ 𝑙 ∨ 𝑟 ∈ 𝑢)) |
40 | 32, 35, 39 | w3a 973 |
. . . 4
wff
((∀𝑞 ∈
Q (𝑞 ∈
𝑙 ↔ ∃𝑟 ∈ Q (𝑞 <Q
𝑟 ∧ 𝑟 ∈ 𝑙)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑢 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑢))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝑙 ∧ 𝑞 ∈ 𝑢) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q
𝑟 → (𝑞 ∈ 𝑙 ∨ 𝑟 ∈ 𝑢))) |
41 | 17, 40 | wa 103 |
. . 3
wff (((𝑙 ⊆ Q ∧
𝑢 ⊆ Q)
∧ (∃𝑞 ∈
Q 𝑞 ∈
𝑙 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑢)) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ 𝑙 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ 𝑙)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑢 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑢))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝑙 ∧ 𝑞 ∈ 𝑢) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q
𝑟 → (𝑞 ∈ 𝑙 ∨ 𝑟 ∈ 𝑢)))) |
42 | 41, 2, 6 | copab 4049 |
. 2
class
{〈𝑙, 𝑢〉 ∣ (((𝑙 ⊆ Q ∧
𝑢 ⊆ Q)
∧ (∃𝑞 ∈
Q 𝑞 ∈
𝑙 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑢)) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ 𝑙 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ 𝑙)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑢 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑢))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝑙 ∧ 𝑞 ∈ 𝑢) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q
𝑟 → (𝑞 ∈ 𝑙 ∨ 𝑟 ∈ 𝑢))))} |
43 | 1, 42 | wceq 1348 |
1
wff
P = {〈𝑙, 𝑢〉 ∣ (((𝑙 ⊆ Q ∧ 𝑢 ⊆ Q) ∧
(∃𝑞 ∈
Q 𝑞 ∈
𝑙 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑢)) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ 𝑙 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ 𝑙)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑢 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑢))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝑙 ∧ 𝑞 ∈ 𝑢) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q
𝑟 → (𝑞 ∈ 𝑙 ∨ 𝑟 ∈ 𝑢))))} |