Detailed syntax breakdown of Definition df-inp
| Step | Hyp | Ref
| Expression |
| 1 | | cnp 7358 |
. 2
class
P |
| 2 | | vl |
. . . . . . . 8
setvar 𝑙 |
| 3 | 2 | cv 1363 |
. . . . . . 7
class 𝑙 |
| 4 | | cnq 7347 |
. . . . . . 7
class
Q |
| 5 | 3, 4 | wss 3157 |
. . . . . 6
wff 𝑙 ⊆
Q |
| 6 | | vu |
. . . . . . . 8
setvar 𝑢 |
| 7 | 6 | cv 1363 |
. . . . . . 7
class 𝑢 |
| 8 | 7, 4 | wss 3157 |
. . . . . 6
wff 𝑢 ⊆
Q |
| 9 | 5, 8 | wa 104 |
. . . . 5
wff (𝑙 ⊆ Q ∧
𝑢 ⊆
Q) |
| 10 | | vq |
. . . . . . . 8
setvar 𝑞 |
| 11 | 10, 2 | wel 2168 |
. . . . . . 7
wff 𝑞 ∈ 𝑙 |
| 12 | 11, 10, 4 | wrex 2476 |
. . . . . 6
wff
∃𝑞 ∈
Q 𝑞 ∈
𝑙 |
| 13 | | vr |
. . . . . . . 8
setvar 𝑟 |
| 14 | 13, 6 | wel 2168 |
. . . . . . 7
wff 𝑟 ∈ 𝑢 |
| 15 | 14, 13, 4 | wrex 2476 |
. . . . . 6
wff
∃𝑟 ∈
Q 𝑟 ∈
𝑢 |
| 16 | 12, 15 | wa 104 |
. . . . 5
wff
(∃𝑞 ∈
Q 𝑞 ∈
𝑙 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑢) |
| 17 | 9, 16 | wa 104 |
. . . 4
wff ((𝑙 ⊆ Q ∧
𝑢 ⊆ Q)
∧ (∃𝑞 ∈
Q 𝑞 ∈
𝑙 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑢)) |
| 18 | 10 | cv 1363 |
. . . . . . . . . . 11
class 𝑞 |
| 19 | 13 | cv 1363 |
. . . . . . . . . . 11
class 𝑟 |
| 20 | | cltq 7352 |
. . . . . . . . . . 11
class
<Q |
| 21 | 18, 19, 20 | wbr 4033 |
. . . . . . . . . 10
wff 𝑞 <Q
𝑟 |
| 22 | 13, 2 | wel 2168 |
. . . . . . . . . 10
wff 𝑟 ∈ 𝑙 |
| 23 | 21, 22 | wa 104 |
. . . . . . . . 9
wff (𝑞 <Q
𝑟 ∧ 𝑟 ∈ 𝑙) |
| 24 | 23, 13, 4 | wrex 2476 |
. . . . . . . 8
wff
∃𝑟 ∈
Q (𝑞
<Q 𝑟 ∧ 𝑟 ∈ 𝑙) |
| 25 | 11, 24 | wb 105 |
. . . . . . 7
wff (𝑞 ∈ 𝑙 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ 𝑙)) |
| 26 | 25, 10, 4 | wral 2475 |
. . . . . 6
wff
∀𝑞 ∈
Q (𝑞 ∈
𝑙 ↔ ∃𝑟 ∈ Q (𝑞 <Q
𝑟 ∧ 𝑟 ∈ 𝑙)) |
| 27 | 10, 6 | wel 2168 |
. . . . . . . . . 10
wff 𝑞 ∈ 𝑢 |
| 28 | 21, 27 | wa 104 |
. . . . . . . . 9
wff (𝑞 <Q
𝑟 ∧ 𝑞 ∈ 𝑢) |
| 29 | 28, 10, 4 | wrex 2476 |
. . . . . . . 8
wff
∃𝑞 ∈
Q (𝑞
<Q 𝑟 ∧ 𝑞 ∈ 𝑢) |
| 30 | 14, 29 | wb 105 |
. . . . . . 7
wff (𝑟 ∈ 𝑢 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑢)) |
| 31 | 30, 13, 4 | wral 2475 |
. . . . . 6
wff
∀𝑟 ∈
Q (𝑟 ∈
𝑢 ↔ ∃𝑞 ∈ Q (𝑞 <Q
𝑟 ∧ 𝑞 ∈ 𝑢)) |
| 32 | 26, 31 | wa 104 |
. . . . 5
wff
(∀𝑞 ∈
Q (𝑞 ∈
𝑙 ↔ ∃𝑟 ∈ Q (𝑞 <Q
𝑟 ∧ 𝑟 ∈ 𝑙)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑢 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑢))) |
| 33 | 11, 27 | wa 104 |
. . . . . . 7
wff (𝑞 ∈ 𝑙 ∧ 𝑞 ∈ 𝑢) |
| 34 | 33 | wn 3 |
. . . . . 6
wff ¬
(𝑞 ∈ 𝑙 ∧ 𝑞 ∈ 𝑢) |
| 35 | 34, 10, 4 | wral 2475 |
. . . . 5
wff
∀𝑞 ∈
Q ¬ (𝑞
∈ 𝑙 ∧ 𝑞 ∈ 𝑢) |
| 36 | 11, 14 | wo 709 |
. . . . . . . 8
wff (𝑞 ∈ 𝑙 ∨ 𝑟 ∈ 𝑢) |
| 37 | 21, 36 | wi 4 |
. . . . . . 7
wff (𝑞 <Q
𝑟 → (𝑞 ∈ 𝑙 ∨ 𝑟 ∈ 𝑢)) |
| 38 | 37, 13, 4 | wral 2475 |
. . . . . 6
wff
∀𝑟 ∈
Q (𝑞
<Q 𝑟 → (𝑞 ∈ 𝑙 ∨ 𝑟 ∈ 𝑢)) |
| 39 | 38, 10, 4 | wral 2475 |
. . . . 5
wff
∀𝑞 ∈
Q ∀𝑟
∈ Q (𝑞
<Q 𝑟 → (𝑞 ∈ 𝑙 ∨ 𝑟 ∈ 𝑢)) |
| 40 | 32, 35, 39 | w3a 980 |
. . . 4
wff
((∀𝑞 ∈
Q (𝑞 ∈
𝑙 ↔ ∃𝑟 ∈ Q (𝑞 <Q
𝑟 ∧ 𝑟 ∈ 𝑙)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑢 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑢))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝑙 ∧ 𝑞 ∈ 𝑢) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q
𝑟 → (𝑞 ∈ 𝑙 ∨ 𝑟 ∈ 𝑢))) |
| 41 | 17, 40 | wa 104 |
. . 3
wff (((𝑙 ⊆ Q ∧
𝑢 ⊆ Q)
∧ (∃𝑞 ∈
Q 𝑞 ∈
𝑙 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑢)) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ 𝑙 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ 𝑙)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑢 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑢))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝑙 ∧ 𝑞 ∈ 𝑢) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q
𝑟 → (𝑞 ∈ 𝑙 ∨ 𝑟 ∈ 𝑢)))) |
| 42 | 41, 2, 6 | copab 4093 |
. 2
class
{〈𝑙, 𝑢〉 ∣ (((𝑙 ⊆ Q ∧
𝑢 ⊆ Q)
∧ (∃𝑞 ∈
Q 𝑞 ∈
𝑙 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑢)) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ 𝑙 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ 𝑙)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑢 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑢))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝑙 ∧ 𝑞 ∈ 𝑢) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q
𝑟 → (𝑞 ∈ 𝑙 ∨ 𝑟 ∈ 𝑢))))} |
| 43 | 1, 42 | wceq 1364 |
1
wff
P = {〈𝑙, 𝑢〉 ∣ (((𝑙 ⊆ Q ∧ 𝑢 ⊆ Q) ∧
(∃𝑞 ∈
Q 𝑞 ∈
𝑙 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑢)) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ 𝑙 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ 𝑙)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑢 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑢))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝑙 ∧ 𝑞 ∈ 𝑢) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q
𝑟 → (𝑞 ∈ 𝑙 ∨ 𝑟 ∈ 𝑢))))} |