ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nq02m GIF version

Theorem nq02m 7406
Description: Multiply a nonnegative fraction by two. (Contributed by Jim Kingdon, 29-Nov-2019.)
Assertion
Ref Expression
nq02m (𝐴Q0 → ([⟨2o, 1o⟩] ~Q0 ·Q0 𝐴) = (𝐴 +Q0 𝐴))

Proof of Theorem nq02m
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nq0nn 7383 . 2 (𝐴Q0 → ∃𝑧𝑤((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q0 ))
2 2onn 6489 . . . . . . 7 2o ∈ ω
3 1pi 7256 . . . . . . 7 1oN
4 mulnnnq0 7391 . . . . . . 7 (((2o ∈ ω ∧ 1oN) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨2o, 1o⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = [⟨(2o ·o 𝑧), (1o ·o 𝑤)⟩] ~Q0 )
52, 3, 4mpanl12 433 . . . . . 6 ((𝑧 ∈ ω ∧ 𝑤N) → ([⟨2o, 1o⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = [⟨(2o ·o 𝑧), (1o ·o 𝑤)⟩] ~Q0 )
6 nn2m 6494 . . . . . . . . 9 (𝑧 ∈ ω → (2o ·o 𝑧) = (𝑧 +o 𝑧))
76adantr 274 . . . . . . . 8 ((𝑧 ∈ ω ∧ 𝑤N) → (2o ·o 𝑧) = (𝑧 +o 𝑧))
8 pinn 7250 . . . . . . . . . 10 (𝑤N𝑤 ∈ ω)
9 1onn 6488 . . . . . . . . . . . 12 1o ∈ ω
10 nnmcom 6457 . . . . . . . . . . . 12 ((1o ∈ ω ∧ 𝑤 ∈ ω) → (1o ·o 𝑤) = (𝑤 ·o 1o))
119, 10mpan 421 . . . . . . . . . . 11 (𝑤 ∈ ω → (1o ·o 𝑤) = (𝑤 ·o 1o))
12 nnm1 6492 . . . . . . . . . . 11 (𝑤 ∈ ω → (𝑤 ·o 1o) = 𝑤)
1311, 12eqtrd 2198 . . . . . . . . . 10 (𝑤 ∈ ω → (1o ·o 𝑤) = 𝑤)
148, 13syl 14 . . . . . . . . 9 (𝑤N → (1o ·o 𝑤) = 𝑤)
1514adantl 275 . . . . . . . 8 ((𝑧 ∈ ω ∧ 𝑤N) → (1o ·o 𝑤) = 𝑤)
167, 15opeq12d 3766 . . . . . . 7 ((𝑧 ∈ ω ∧ 𝑤N) → ⟨(2o ·o 𝑧), (1o ·o 𝑤)⟩ = ⟨(𝑧 +o 𝑧), 𝑤⟩)
1716eceq1d 6537 . . . . . 6 ((𝑧 ∈ ω ∧ 𝑤N) → [⟨(2o ·o 𝑧), (1o ·o 𝑤)⟩] ~Q0 = [⟨(𝑧 +o 𝑧), 𝑤⟩] ~Q0 )
18 nnanq0 7399 . . . . . . 7 ((𝑧 ∈ ω ∧ 𝑧 ∈ ω ∧ 𝑤N) → [⟨(𝑧 +o 𝑧), 𝑤⟩] ~Q0 = ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
19183anidm12 1285 . . . . . 6 ((𝑧 ∈ ω ∧ 𝑤N) → [⟨(𝑧 +o 𝑧), 𝑤⟩] ~Q0 = ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
205, 17, 193eqtrd 2202 . . . . 5 ((𝑧 ∈ ω ∧ 𝑤N) → ([⟨2o, 1o⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
2120adantr 274 . . . 4 (((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q0 ) → ([⟨2o, 1o⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
22 oveq2 5850 . . . . . 6 (𝐴 = [⟨𝑧, 𝑤⟩] ~Q0 → ([⟨2o, 1o⟩] ~Q0 ·Q0 𝐴) = ([⟨2o, 1o⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
23 id 19 . . . . . . 7 (𝐴 = [⟨𝑧, 𝑤⟩] ~Q0𝐴 = [⟨𝑧, 𝑤⟩] ~Q0 )
2423, 23oveq12d 5860 . . . . . 6 (𝐴 = [⟨𝑧, 𝑤⟩] ~Q0 → (𝐴 +Q0 𝐴) = ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
2522, 24eqeq12d 2180 . . . . 5 (𝐴 = [⟨𝑧, 𝑤⟩] ~Q0 → (([⟨2o, 1o⟩] ~Q0 ·Q0 𝐴) = (𝐴 +Q0 𝐴) ↔ ([⟨2o, 1o⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 )))
2625adantl 275 . . . 4 (((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q0 ) → (([⟨2o, 1o⟩] ~Q0 ·Q0 𝐴) = (𝐴 +Q0 𝐴) ↔ ([⟨2o, 1o⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 )))
2721, 26mpbird 166 . . 3 (((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q0 ) → ([⟨2o, 1o⟩] ~Q0 ·Q0 𝐴) = (𝐴 +Q0 𝐴))
2827exlimivv 1884 . 2 (∃𝑧𝑤((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q0 ) → ([⟨2o, 1o⟩] ~Q0 ·Q0 𝐴) = (𝐴 +Q0 𝐴))
291, 28syl 14 1 (𝐴Q0 → ([⟨2o, 1o⟩] ~Q0 ·Q0 𝐴) = (𝐴 +Q0 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wex 1480  wcel 2136  cop 3579  ωcom 4567  (class class class)co 5842  1oc1o 6377  2oc2o 6378   +o coa 6381   ·o comu 6382  [cec 6499  Ncnpi 7213   ~Q0 ceq0 7227  Q0cnq0 7228   +Q0 cplq0 7230   ·Q0 cmq0 7231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-mi 7247  df-enq0 7365  df-nq0 7366  df-plq0 7368  df-mq0 7369
This theorem is referenced by:  prarloclemcalc  7443
  Copyright terms: Public domain W3C validator