ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nq02m GIF version

Theorem nq02m 7660
Description: Multiply a nonnegative fraction by two. (Contributed by Jim Kingdon, 29-Nov-2019.)
Assertion
Ref Expression
nq02m (𝐴Q0 → ([⟨2o, 1o⟩] ~Q0 ·Q0 𝐴) = (𝐴 +Q0 𝐴))

Proof of Theorem nq02m
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nq0nn 7637 . 2 (𝐴Q0 → ∃𝑧𝑤((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q0 ))
2 2onn 6675 . . . . . . 7 2o ∈ ω
3 1pi 7510 . . . . . . 7 1oN
4 mulnnnq0 7645 . . . . . . 7 (((2o ∈ ω ∧ 1oN) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨2o, 1o⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = [⟨(2o ·o 𝑧), (1o ·o 𝑤)⟩] ~Q0 )
52, 3, 4mpanl12 436 . . . . . 6 ((𝑧 ∈ ω ∧ 𝑤N) → ([⟨2o, 1o⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = [⟨(2o ·o 𝑧), (1o ·o 𝑤)⟩] ~Q0 )
6 nn2m 6681 . . . . . . . . 9 (𝑧 ∈ ω → (2o ·o 𝑧) = (𝑧 +o 𝑧))
76adantr 276 . . . . . . . 8 ((𝑧 ∈ ω ∧ 𝑤N) → (2o ·o 𝑧) = (𝑧 +o 𝑧))
8 pinn 7504 . . . . . . . . . 10 (𝑤N𝑤 ∈ ω)
9 1onn 6674 . . . . . . . . . . . 12 1o ∈ ω
10 nnmcom 6643 . . . . . . . . . . . 12 ((1o ∈ ω ∧ 𝑤 ∈ ω) → (1o ·o 𝑤) = (𝑤 ·o 1o))
119, 10mpan 424 . . . . . . . . . . 11 (𝑤 ∈ ω → (1o ·o 𝑤) = (𝑤 ·o 1o))
12 nnm1 6679 . . . . . . . . . . 11 (𝑤 ∈ ω → (𝑤 ·o 1o) = 𝑤)
1311, 12eqtrd 2262 . . . . . . . . . 10 (𝑤 ∈ ω → (1o ·o 𝑤) = 𝑤)
148, 13syl 14 . . . . . . . . 9 (𝑤N → (1o ·o 𝑤) = 𝑤)
1514adantl 277 . . . . . . . 8 ((𝑧 ∈ ω ∧ 𝑤N) → (1o ·o 𝑤) = 𝑤)
167, 15opeq12d 3865 . . . . . . 7 ((𝑧 ∈ ω ∧ 𝑤N) → ⟨(2o ·o 𝑧), (1o ·o 𝑤)⟩ = ⟨(𝑧 +o 𝑧), 𝑤⟩)
1716eceq1d 6724 . . . . . 6 ((𝑧 ∈ ω ∧ 𝑤N) → [⟨(2o ·o 𝑧), (1o ·o 𝑤)⟩] ~Q0 = [⟨(𝑧 +o 𝑧), 𝑤⟩] ~Q0 )
18 nnanq0 7653 . . . . . . 7 ((𝑧 ∈ ω ∧ 𝑧 ∈ ω ∧ 𝑤N) → [⟨(𝑧 +o 𝑧), 𝑤⟩] ~Q0 = ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
19183anidm12 1329 . . . . . 6 ((𝑧 ∈ ω ∧ 𝑤N) → [⟨(𝑧 +o 𝑧), 𝑤⟩] ~Q0 = ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
205, 17, 193eqtrd 2266 . . . . 5 ((𝑧 ∈ ω ∧ 𝑤N) → ([⟨2o, 1o⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
2120adantr 276 . . . 4 (((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q0 ) → ([⟨2o, 1o⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
22 oveq2 6015 . . . . . 6 (𝐴 = [⟨𝑧, 𝑤⟩] ~Q0 → ([⟨2o, 1o⟩] ~Q0 ·Q0 𝐴) = ([⟨2o, 1o⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
23 id 19 . . . . . . 7 (𝐴 = [⟨𝑧, 𝑤⟩] ~Q0𝐴 = [⟨𝑧, 𝑤⟩] ~Q0 )
2423, 23oveq12d 6025 . . . . . 6 (𝐴 = [⟨𝑧, 𝑤⟩] ~Q0 → (𝐴 +Q0 𝐴) = ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
2522, 24eqeq12d 2244 . . . . 5 (𝐴 = [⟨𝑧, 𝑤⟩] ~Q0 → (([⟨2o, 1o⟩] ~Q0 ·Q0 𝐴) = (𝐴 +Q0 𝐴) ↔ ([⟨2o, 1o⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 )))
2625adantl 277 . . . 4 (((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q0 ) → (([⟨2o, 1o⟩] ~Q0 ·Q0 𝐴) = (𝐴 +Q0 𝐴) ↔ ([⟨2o, 1o⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 )))
2721, 26mpbird 167 . . 3 (((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q0 ) → ([⟨2o, 1o⟩] ~Q0 ·Q0 𝐴) = (𝐴 +Q0 𝐴))
2827exlimivv 1943 . 2 (∃𝑧𝑤((𝑧 ∈ ω ∧ 𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q0 ) → ([⟨2o, 1o⟩] ~Q0 ·Q0 𝐴) = (𝐴 +Q0 𝐴))
291, 28syl 14 1 (𝐴Q0 → ([⟨2o, 1o⟩] ~Q0 ·Q0 𝐴) = (𝐴 +Q0 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wex 1538  wcel 2200  cop 3669  ωcom 4682  (class class class)co 6007  1oc1o 6561  2oc2o 6562   +o coa 6565   ·o comu 6566  [cec 6686  Ncnpi 7467   ~Q0 ceq0 7481  Q0cnq0 7482   +Q0 cplq0 7484   ·Q0 cmq0 7485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-1o 6568  df-2o 6569  df-oadd 6572  df-omul 6573  df-er 6688  df-ec 6690  df-qs 6694  df-ni 7499  df-mi 7501  df-enq0 7619  df-nq0 7620  df-plq0 7622  df-mq0 7623
This theorem is referenced by:  prarloclemcalc  7697
  Copyright terms: Public domain W3C validator