Step | Hyp | Ref
| Expression |
1 | | nq0nn 7383 |
. 2
⊢ (𝐴 ∈
Q0 → ∃𝑧∃𝑤((𝑧 ∈ ω ∧ 𝑤 ∈ N) ∧ 𝐴 = [〈𝑧, 𝑤〉] ~Q0
)) |
2 | | 2onn 6489 |
. . . . . . 7
⊢
2o ∈ ω |
3 | | 1pi 7256 |
. . . . . . 7
⊢
1o ∈ N |
4 | | mulnnnq0 7391 |
. . . . . . 7
⊢
(((2o ∈ ω ∧ 1o ∈
N) ∧ (𝑧
∈ ω ∧ 𝑤
∈ N)) → ([〈2o, 1o〉]
~Q0 ·Q0 [〈𝑧, 𝑤〉] ~Q0 ) =
[〈(2o ·o 𝑧), (1o ·o 𝑤)〉]
~Q0 ) |
5 | 2, 3, 4 | mpanl12 433 |
. . . . . 6
⊢ ((𝑧 ∈ ω ∧ 𝑤 ∈ N) →
([〈2o, 1o〉] ~Q0
·Q0 [〈𝑧, 𝑤〉] ~Q0 ) =
[〈(2o ·o 𝑧), (1o ·o 𝑤)〉]
~Q0 ) |
6 | | nn2m 6494 |
. . . . . . . . 9
⊢ (𝑧 ∈ ω →
(2o ·o 𝑧) = (𝑧 +o 𝑧)) |
7 | 6 | adantr 274 |
. . . . . . . 8
⊢ ((𝑧 ∈ ω ∧ 𝑤 ∈ N) →
(2o ·o 𝑧) = (𝑧 +o 𝑧)) |
8 | | pinn 7250 |
. . . . . . . . . 10
⊢ (𝑤 ∈ N →
𝑤 ∈
ω) |
9 | | 1onn 6488 |
. . . . . . . . . . . 12
⊢
1o ∈ ω |
10 | | nnmcom 6457 |
. . . . . . . . . . . 12
⊢
((1o ∈ ω ∧ 𝑤 ∈ ω) → (1o
·o 𝑤) =
(𝑤 ·o
1o)) |
11 | 9, 10 | mpan 421 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ ω →
(1o ·o 𝑤) = (𝑤 ·o
1o)) |
12 | | nnm1 6492 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ ω → (𝑤 ·o
1o) = 𝑤) |
13 | 11, 12 | eqtrd 2198 |
. . . . . . . . . 10
⊢ (𝑤 ∈ ω →
(1o ·o 𝑤) = 𝑤) |
14 | 8, 13 | syl 14 |
. . . . . . . . 9
⊢ (𝑤 ∈ N →
(1o ·o 𝑤) = 𝑤) |
15 | 14 | adantl 275 |
. . . . . . . 8
⊢ ((𝑧 ∈ ω ∧ 𝑤 ∈ N) →
(1o ·o 𝑤) = 𝑤) |
16 | 7, 15 | opeq12d 3766 |
. . . . . . 7
⊢ ((𝑧 ∈ ω ∧ 𝑤 ∈ N) →
〈(2o ·o 𝑧), (1o ·o 𝑤)〉 = 〈(𝑧 +o 𝑧), 𝑤〉) |
17 | 16 | eceq1d 6537 |
. . . . . 6
⊢ ((𝑧 ∈ ω ∧ 𝑤 ∈ N) →
[〈(2o ·o 𝑧), (1o ·o 𝑤)〉]
~Q0 = [〈(𝑧 +o 𝑧), 𝑤〉] ~Q0
) |
18 | | nnanq0 7399 |
. . . . . . 7
⊢ ((𝑧 ∈ ω ∧ 𝑧 ∈ ω ∧ 𝑤 ∈ N) →
[〈(𝑧 +o
𝑧), 𝑤〉] ~Q0 =
([〈𝑧, 𝑤〉]
~Q0 +Q0 [〈𝑧, 𝑤〉] ~Q0
)) |
19 | 18 | 3anidm12 1285 |
. . . . . 6
⊢ ((𝑧 ∈ ω ∧ 𝑤 ∈ N) →
[〈(𝑧 +o
𝑧), 𝑤〉] ~Q0 =
([〈𝑧, 𝑤〉]
~Q0 +Q0 [〈𝑧, 𝑤〉] ~Q0
)) |
20 | 5, 17, 19 | 3eqtrd 2202 |
. . . . 5
⊢ ((𝑧 ∈ ω ∧ 𝑤 ∈ N) →
([〈2o, 1o〉] ~Q0
·Q0 [〈𝑧, 𝑤〉] ~Q0 ) =
([〈𝑧, 𝑤〉]
~Q0 +Q0 [〈𝑧, 𝑤〉] ~Q0
)) |
21 | 20 | adantr 274 |
. . . 4
⊢ (((𝑧 ∈ ω ∧ 𝑤 ∈ N) ∧
𝐴 = [〈𝑧, 𝑤〉] ~Q0 ) →
([〈2o, 1o〉] ~Q0
·Q0 [〈𝑧, 𝑤〉] ~Q0 ) =
([〈𝑧, 𝑤〉]
~Q0 +Q0 [〈𝑧, 𝑤〉] ~Q0
)) |
22 | | oveq2 5850 |
. . . . . 6
⊢ (𝐴 = [〈𝑧, 𝑤〉] ~Q0 →
([〈2o, 1o〉] ~Q0
·Q0 𝐴) = ([〈2o,
1o〉] ~Q0
·Q0 [〈𝑧, 𝑤〉] ~Q0
)) |
23 | | id 19 |
. . . . . . 7
⊢ (𝐴 = [〈𝑧, 𝑤〉] ~Q0 →
𝐴 = [〈𝑧, 𝑤〉] ~Q0
) |
24 | 23, 23 | oveq12d 5860 |
. . . . . 6
⊢ (𝐴 = [〈𝑧, 𝑤〉] ~Q0 →
(𝐴
+Q0 𝐴) = ([〈𝑧, 𝑤〉] ~Q0
+Q0 [〈𝑧, 𝑤〉] ~Q0
)) |
25 | 22, 24 | eqeq12d 2180 |
. . . . 5
⊢ (𝐴 = [〈𝑧, 𝑤〉] ~Q0 →
(([〈2o, 1o〉] ~Q0
·Q0 𝐴) = (𝐴 +Q0 𝐴) ↔ ([〈2o,
1o〉] ~Q0
·Q0 [〈𝑧, 𝑤〉] ~Q0 ) =
([〈𝑧, 𝑤〉]
~Q0 +Q0 [〈𝑧, 𝑤〉] ~Q0
))) |
26 | 25 | adantl 275 |
. . . 4
⊢ (((𝑧 ∈ ω ∧ 𝑤 ∈ N) ∧
𝐴 = [〈𝑧, 𝑤〉] ~Q0 ) →
(([〈2o, 1o〉] ~Q0
·Q0 𝐴) = (𝐴 +Q0 𝐴) ↔ ([〈2o,
1o〉] ~Q0
·Q0 [〈𝑧, 𝑤〉] ~Q0 ) =
([〈𝑧, 𝑤〉]
~Q0 +Q0 [〈𝑧, 𝑤〉] ~Q0
))) |
27 | 21, 26 | mpbird 166 |
. . 3
⊢ (((𝑧 ∈ ω ∧ 𝑤 ∈ N) ∧
𝐴 = [〈𝑧, 𝑤〉] ~Q0 ) →
([〈2o, 1o〉] ~Q0
·Q0 𝐴) = (𝐴 +Q0 𝐴)) |
28 | 27 | exlimivv 1884 |
. 2
⊢
(∃𝑧∃𝑤((𝑧 ∈ ω ∧ 𝑤 ∈ N) ∧ 𝐴 = [〈𝑧, 𝑤〉] ~Q0 ) →
([〈2o, 1o〉] ~Q0
·Q0 𝐴) = (𝐴 +Q0 𝐴)) |
29 | 1, 28 | syl 14 |
1
⊢ (𝐴 ∈
Q0 → ([〈2o, 1o〉]
~Q0 ·Q0 𝐴) = (𝐴 +Q0 𝐴)) |